摘要:
A data storage subsystem having a plurality of data compression engines configured to compress data, each having a different compression algorithm. A data handling system is configured to select at least one sample of data; operate a plurality of the data compression engines to compress the selected sample(s); determine the compression ratios of the operated data compression engines with respect to the selected sample(s); and select the data compression engine having the greatest compression ratio with respect to the selected sample(s), to compress the data. Further, the data compression engines may be in tiers from low to high in accordance with expected latency to compress data and to uncompress compressed data; and a data compression engine is selected from a tier that is inverse to the present rate of access.
摘要:
A method for more effectively distributing the I/O workload in a data replication system is disclosed herein. In selected embodiments, such a method may include generating an I/O request and identifying a storage resource group associated with the I/O request. In the event the I/O request is associated with a first storage resource group, the I/O request may be directed to a first storage device and a copy of the I/O request may be mirrored from the first storage device to a second storage device. Alternatively, in the event the I/O request is associated with a second storage resource group, the I/O request may be directed to a second storage device and a copy of the I/O request may be mirrored from the second storage device to the first storage device.
摘要:
A method for more effectively distributing the I/O workload in a data replication system is disclosed herein. In selected embodiments, such a method may include generating an I/O request and identifying a storage resource group associated with the I/O request. In the event the I/O request is associated with a first storage resource group, the I/O request may be directed to a first storage device and a copy of the I/O request may be mirrored from the first storage device to a second storage device. Alternatively, in the event the I/O request is associated with a second storage resource group, the I/O request may be directed to a second storage device and a copy of the I/O request may be mirrored from the second storage device to the first storage device. A corresponding system, apparatus, and computer program product are also disclosed and claimed herein.
摘要:
A method for managing extents in a data storage system includes monitoring usage statistics for an extent residing on one or more powered-up storage devices. In the event the extent has not been accessed for specified period of time (as determined from the usage statistics), the method automatically compresses the extent and migrates the extent to an intermediate repository. Once the amount of data in the intermediate repository reaches a specified level, the method migrates the extent from the intermediate repository to one or more normally powered-down storage devices. If I/O is received for the extent while it resides in the normally powered-down storage devices or the intermediate repository, the method automatically migrates the extent from the normally powered-down storage devices or the intermediate repository to the normally powered-up storage devices. A corresponding apparatus and computer program product are also disclosed.
摘要:
A method for managing extents in a data storage system includes monitoring usage statistics for an extent residing on one or more powered-up storage devices. In the event the extent has not been accessed for specified period of time (as determined from the usage statistics), the method automatically compresses the extent and migrates the extent to an intermediate repository. Once the amount of data in the intermediate repository reaches a specified level, the method migrates the extent from the intermediate repository to one or more normally powered-down storage devices. If I/O is received for the extent while it resides in the normally powered-down storage devices or the intermediate repository, the method automatically migrates the extent from the normally powered-down storage devices or the intermediate repository to the normally powered-up storage devices. A corresponding apparatus and computer program product are also disclosed.
摘要:
A read/write ratio for each of a plurality of data segments classified in a hot category as hot data segments is determined. Each of the plurality of hot data segments is ordered by the read/write ratio in a descending order. Each of a plurality of available SSD devices is ordered by a remaining life expectancy in an ascending order. Those of the plurality of hot data segments are matched with those of the plurality of hot data segments with those of the plurality of available SSD devices such that a hot data segment having a higher read/write ratio is provided to an SSD device having a smaller remaining life expectancy than another hot data segment having a lower read/write ratio.
摘要:
Extent migration is provided in a data storage environment configured for synchronous replication between a primary and secondary pair of storage entities, each having tiered storage devices In one embodiment, by way of example only, a migration instruction is sent, by the primary storage entity, to the secondary storage entity, the migration instruction including a relative priority based on a primary ordered heat map of the tiered storage devices of the primary storage entity. The relative priority is used against a secondary ordered heat map of the tiered storage devices of the secondary storage entity to perform the extent migration, regardless of whether the primary and secondary storage entities are identical.
摘要:
A method for managing extents in a data storage system includes monitoring usage statistics for an extent residing on one or more powered-up storage devices. In the event the extent has not been accessed for specified period of time (as determined from the usage statistics), the method automatically compresses the extent and migrates the extent to an intermediate repository. Once the amount of data in the intermediate repository reaches a specified level, the method migrates the extent from the intermediate repository to one or more normally powered-down storage devices. If I/O is received for the extent while it resides in the normally powered-down storage devices or the intermediate repository, the method automatically migrates the extent from the normally powered-down storage devices or the intermediate repository to the normally powered-up storage devices. A corresponding apparatus and computer program product are also disclosed.
摘要:
A method for more effectively distributing the I/O workload in a data replication system is disclosed herein. In selected embodiments, such a method may include generating an I/O request and identifying a storage resource group associated with the I/O request. In the event the I/O request is associated with a first storage resource group, the I/O request may be directed to a first storage device and a copy of the I/O request may be mirrored from the first storage device to a second storage device. Alternatively, in the event the I/O request is associated with a second storage resource group, the I/O request may be directed to a second storage device and a copy of the I/O request may be mirrored from the second storage device to the first storage device. A corresponding system, apparatus, and computer program product are also disclosed and claimed herein.
摘要:
In one embodiment, pursuant to migrating the data from the first to the second storage medium, the data is allocated to the second storage medium while retaining an allocation of the data in the first storage medium. If the data is migrated from the second storage medium back to the first storage medium, the data is pointed to the allocation of the data in the first storage medium to alleviate data movement from the second storage medium to the first storage medium. If the allocation of the data in the first storage medium is determined to be needed for other data, the allocation of the data in the first storage medium is freed.