Abstract:
A method of generating a film during a chemical vapor deposition process is disclosed. One embodiment includes generating a first electrical pulse having a first pulse amplitude; using the first electrical pulse to generate a first density of radicalized species; disassociating a feedstock gas using the radicalized species in the first density of radicalized species, thereby creating a first deposition material; depositing the first deposition material on a substrate; generating a second electrical pulse having a second pulse amplitude, wherein the second pulse amplitude is different from the first pulse width; using the second electrical pulse to generate a second density of radicalized species; disassociating a feedstock gas using the radicalized species in the second density of radicalized species, thereby creating a second deposition material; and depositing the second plurality of deposition materials on the first deposition material.
Abstract:
A method of generating a film during a chemical vapor deposition process is disclosed. One embodiment includes creating a substrate by generating a first electrical pulse having a first pulse amplitude; using the first electrical pulse to generate a first density of radicalized species; disassociating a feedstock gas using the radicalized species in the first density of radicalized species, thereby creating a first deposition material; depositing the first deposition material on a substrate; generating a second electrical pulse having a second pulse amplitude, wherein the second pulse amplitude is different from the first pulse width; using the second electrical pulse to generate a second density of radicalized species; disassociating a feedstock gas using the radicalized species in the second density of radicalized species, thereby creating a second deposition material; and depositing the second plurality of deposition materials on the first deposition material.
Abstract:
A method of sputter depositing dielectric thin films may comprise: providing a substrate on a substrate pedestal in a process chamber, the substrate being positioned facing a sputter target; simultaneously applying a first RF frequency from a first power supply and a second RF frequency from a second power supply to the sputter target; and forming a plasma in the process chamber between the substrate and the sputter target, for sputtering the target; wherein the first RF frequency is less than the second RF frequency, the first RF frequency is chosen to control the ion energy of the plasma and the second RF frequency is chosen to control the ion density of the plasma. The self-bias of surfaces within said process chamber may be selected; this is enabled by connecting a blocking capacitor between the substrate pedestal and ground.
Abstract:
A method of fabricating a layer of a thin film battery comprises providing a sputtering target and depositing the layer on a substrate using a physical vapor deposition process enhanced by a combination of plasma processes. The deposition process may include: (1) generation of a plasma between the target and the substrate; (2) sputtering the target; (3) supplying microwave energy to the plasma; and (4) applying radio frequency power to the substrate. A sputtering target for a thin film battery cathode layer has an average composition of LiMaNbZc, wherein 0.20>{b/(a+b)}>0 and the ratio of a to c is approximately equal to the stoichiometric ratio of a desired crystalline structure of the cathode layer, N is an alkaline earth element, M is selected from the group consisting of Co, Mn, Al, Ni and V, and Z is selected from the group consisting of (PO4), O, F and N.
Abstract:
One embodiment of the present invention is a system for depositing films on a substrate. This systems includes a vacuum chamber; a linear discharge tube housed inside the vacuum chamber; a magnetron configured to generate a microwave power signal that can be applied to the linear discharge tube; a power supply configured to provide a signal to the magnetron; and a pulse control connected to the power supply. The pulse control is configured to control the duty cycle of the plurality of pulses, the frequency of the plurality of pulses, and/or the contour of the plurality of pulses.
Abstract:
One embodiment includes a sputtering system that includes a vacuum chamber; a substrate transport system configured to transport a substrate through the vacuum chamber; a cathode for supporting a sputtering target, the cathode at least partially inside the vacuum chamber; and a power supply configured to supply power to the cathode and the power supply configured to output a modulated power signal. Depending upon the implementation, the power supply can be configured to output an amplitude-modulated power signal; a frequency-modulated power signal; a pulse-width power signal; a pulse-position power signal; a pulse-amplitude modulated power signal; or any other type of modulated power or energy signal.
Abstract:
A method of fabricating a layer of a thin film battery comprises providing a sputtering target and depositing the layer on a substrate using a physical vapor deposition process enhanced by a combination of plasma processes. The deposition process may include: (1) generation of a plasma between the target and the substrate; (2) sputtering the target; (3) supplying microwave energy to the plasma; and (4) applying radio frequency power to the substrate. A sputtering target for a thin film battery cathode layer has an average composition of LiMaNbZc, wherein 0.20>{b/(a+b)}>0 and the ratio of a to c is approximately equal to the stoichiometric ratio of a desired crystalline structure of the cathode layer, N is an alkaline earth element, M is selected from the group consisting of Co, Mn, Al, Ni and V, and Z is selected from the group consisting of (PO4), O, F and N.
Abstract:
A method for controlling ion density and sputtering rate in a sputtering system is disclosed. In one embodiment, a first pulse-width power signal is applied to the cathode to thereby generate a higher concentration of ions. The pulse-width of the first pulse-width power signal is then decreased to thereby increase the sputtering rate and decrease the ion density around the cathode. Next, the process is repeated to create a modulated signal.
Abstract:
This invention provides novel methods and reagents for specifically delivering biologically active compounds to phagocytic mammalian cells. The invention also relates to specific uptake of such biologically active compounds by phagocytic cells and delivery of such compounds to specific sites intracellularly. The invention specifically relates to methods of facilitating the entry of antiviral and antimicrobial drugs and other agents into phagocytic cells and for targeting such compounds to specific organelles within the cell. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising conjugates of such antimicrobial drugs and agents covalently linked to particulate carriers generally termed microparticles. In particular embodiments, the antimicrobial drug is covalently linked to a microparticle via a cleavable linker moiety that is non-specifically cleaved in a phagocytic cell. In additional embodiments, the biologically-active compound is provided in an inactive, prodrug form that is activated by a chemical or enzymatic activity specific for cells infected by a microorganism, particularly a pathological or disease-causing microorganism. Thus, the invention provides cell targeting of drugs wherein the targeted drug is only activated in cells infected with a particular microorganism. Alternative embodiments of such specific drug delivery compositions also contain polar lipid carrier molecules effective in achieving intracellular organelle targeting in infected phagocytic mammalian cells. Particular embodiments of such conjugates comprise antimicrobial drugs covalently linked both to a microparticle via a cleavable linker molecule and to a polar lipid compound, to facilitate targeting of such drugs to particular subcellular organelles within the cell. Also provided are porous microparticles impregnated with antiviral and antimicrobial drugs and agents wherein the surface or outside extent of the microparticle is covered with a degradable coating that is degraded within a phagocytic mammalian cell. Also provided are nonporous microparticles coated with an antiviral or antimicrobial drug and further coated wherein the surface or outside extent of the microparticle is covered with a degradable coating that is degraded within a phagocytic mammalian cell. Methods of inhibiting, attenuating, arresting, combating and overcoming microbial infection of phagocytic mammalian cells in vivo and in vitro are also provided.
Abstract:
This invention provides fragrance compositions comprising a carrier solution used for cleaning purposes or for topical administration and nonfragrant photoresponsive agents that are capable of undergoing intramolecular photorearrangements to release a fragrance. The photoresponsive fragrance composition may comprise the prephotorearrangement first fragrance agent, the photorearranged and released fragrance agent, a combination of the first and second agents, or any of the above in combination with a known fragrance agent.