摘要:
A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels and electrical low-speed channels. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical low-speed channels through the use of frequency division multiplexing and preferably also QAM modulation. The ADM crosspoint couples incoming low-speed channels to outgoing low-speed channels, thus implementing the ADM functionality for the FDM node.
摘要:
A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels, and low-speed tributaries. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical, low-speed channels through the use of frequency division multiplexing. The ADM crosspoint couples any incoming low-speed channels and any incoming tributaries to any outgoing low-speed channels and tributaries, thus implementing the ADM functionality for the FDM node.
摘要:
A transmitter subsystem generates an optical signal which contains multiple subbands of information. The subbands have different polarizations. For example, in one approach, two or more optical transmitters generate optical signals which have different polarizations. An optical combiner optically combines the optical signals into a composite optical signal for transmission across an optical fiber. In another aspect, each optical transmitter generates an optical signal containing both a lower optical sideband and an upper optical sideband (i.e., a double sideband optical signal). An optical filter selects the upper optical sideband of one optical signal and the lower optical sideband of another optical signal to produce a composite optical signal.
摘要:
A system transmits digital data over an optical fiber at high aggregate data rates and high bandwidth efficiencies. The system includes a modulation stage, a frequency division multiplexer, and an optical modulator. The modulation stage QAM-modulates a plurality of incoming digital data channels. The frequency division multiplexer combines the QAM-modulated signals by frequency division multiplexing them into an RF signal. The optical modulator uses the RF signal to modulate an optical carrier for transmission over an optical fiber.
摘要:
An electro-optic modulator includes a splitting section, at least three transmission legs, an RF phase-shifting section, a DC-phase shifting section, and a combining section. The splitting section splits a received optical signal into sub-signals, one for each transmission leg. The RF phase-shifting section phase shifts at least two of the sub-signals by an amount proportional to a received RF signal; while the DC phase-shifting section phase shifts at least two of the sub-signals by a DC phase. The combining section combines the phase-shifted sub-signals into a modulated optical signal. In a preferred embodiment, the modulator is characterized by design parameters, such as splitting ratio, DC phase shift, RF coupling efficiency, and combining ratio, and these design parameters are selected to ensure that the modulator meets predetermined performance characteristics, such as maximum harmonic levels or minimum signal to noise ratios.
摘要:
A Mach-Zehnder modulator (MZM), which divides a CW laser beam into two optical portions, is biased at a 180.degree. phase difference between the two optical portions. An RF signal and an LO signal are simultaneously applied to one of the optical portions of the laser beam to produce phase changes between the two optical portions. The two optical portions of the laser beam are then recombined into an optical output beam, which is detected by a photodetector. The photodetector generates a photocurrent, which contains a component at a beat frequency--i.e., the frequency difference between the RF and LO frequencies. The waveform of the photocurrent component at the beat frequency is substantially the same (except for amplitude and a fixed phase shift) as the waveform of the RF signal.
摘要:
Attenuation caused by dispersion in an optical fiber communications system is compensated. A number of low-speed channels is to be transmitted across an optical fiber. Each low-speed channel is allocated a different frequency band for transmission. The attenuation caused by dispersion is estimated for each of the frequency bands. The power of each low-speed channel is adjusted to compensate for the estimated attenuation. The power-adjusted low-speed channels are frequency division multiplexed together to produce an electrical high-speed channel suitable for transmission across the communications system.
摘要:
A mirror drive mechanism for a tilting mirror is controlled using feedback from one or more interferometric angular sensors. The wavelength of an optical beam is varied as it is fed into an interferometric angular sensor. The wavelength at which the resulting interference pattern is measured to be at a minimum intensity is determined. This wavelength is used to determine a distance quantity representative of the angular position of the mirror.
摘要:
Attenuation caused by dispersion in an optical fiber communications system is compensated. A number of low-speed channels is to be transmitted across an optical fiber. Each low-speed channel is allocated a different frequency band for transmission. The attenuation caused by dispersion is estimated for each of the frequency bands. The power of each low-speed channel is adjusted to compensate for the estimated attenuation. The power-adjusted low-speed channels are frequency division multiplexed together to produce an electrical high-speed channel suitable for transmission across the communications system.
摘要:
A true time delay beamformer for RF/microwave phased array antenna systems using multiple laser sources, optical modulators to convert the electrical signal to a modulated optical signal, standard optical fiber for creating time delays, dispersive optical fiber for creating delays, optical splitting and/or switching section, photodetectors to convert the modulated optical signal to an electrical signal, and a signal combining section. The true time delay beamformer has the capability to create multiple simultaneous RF/microwave antenna beams. One (more lasers) is used to source one (or more) wavelengths of light to the optical modulator. The signal from one (or more) antenna elements drive the optical modulator. The light from the optical modulator passes through the standard optical fibers and/or the dispersive optical fibers to create time delay variation for one optical modulator relative to another allowing for the formation of RF/microwave beams. Fixed location RF/microwave beams can be generated by a static network of standard and/or dispersive optical delay fibers. Steering of the location of the RF/microwave beams can be accomplished by an optical switching mechanism which could be based on MEMs and/or wavelength routing based switching. Finally, all the signals for a RF/microwave beam are summed to form a single output. The summing can occur either optically before the photodetectors and/or electrically after the photodetectors.