摘要:
Embodiments of the invention disclose a virtual manipulative to facilitate math learning. The virtual manipulative comprises a user interface to progressively form one on more columns to hold partial sums or number decompositions to assist a learner in computing a sum.
摘要:
In one embodiment, the invention discloses a method for adapting educational content. The method comprises generating data for each of a plurality of students, the data pertaining to an aspect of the student's interaction with an educational system; combining the generated data to form a combined data set; analyzing the combined data set to identify clusters, each representing similar students according to a mathematical model; and adapting the educational system to provide a customized learning experience for a particular student based on an identified cluster.
摘要:
In one embodiment, the invention discloses a method for adapting educational content. The method comprises generating data for each of a plurality of students, the data pertaining to an aspect of the student's interaction with an educational system, combining the generated data to form a combined data set; analyzing the combined data set to identify clusters, each representing similar students according to a mathematical model; and adapting the educational system to provide a customized learning experience for a particular student based on an identified cluster.
摘要:
A pulse hub motor having coils (101) and magnets (107) interacting three dimensionally in x, y, and z axes to facilitate both increased power and efficiency through the ability to have more coils (101) in the motor, have each coil (101) perform both push and pull functions, and yet have the flexibility to only use the amount of coils (101) needed for real-time power requirements, whilst regenerating power in both normal drive and braking modes.
摘要:
A method, apparatus, and system are provided for implementing spin-torque oscillator sensing with an enhanced integrated demodulator for hard disk drives. The demodulator receives an input signal from a STO read sensor having an oscillation frequency ω related to the strength of the detected magnetic signal field. The demodulator includes a pair of mixers coupled to a quadrature reference oscillator with respective quadrature components cos(ω0t), and sin(ω0t) of the quadrature reference oscillator being mixed with a received input signal to form signals at the sum and difference frequencies, ω±ω0. Each of these mixer products is lowpass filtered by a respective a lowpass filter to remove the sum frequency components for providing a demodulator output signal that is directly proportional the STO oscillation frequency ω. The demodulator output signal is used for processing by data detection electronics.
摘要:
Read elements and associated methods of fabrication are disclosed. A read element as described herein includes a magnetoresistance (MR) sensor sandwiched between first and second shields. The read element uses the first shield as an active portion of the MR sensor. Instead of implementing an AFM pinning layer in the MR sensor, the first shield takes the place of the AFM pinning layer. The first shield is orthogonally coupled to the pinned layer through an orthogonal coupling layer, such as a thin layer of AFM material. Through this structure, the magnetic moment of the first shield pins the magnetic moment of the pinned layer transverse to the ABS of the read element, and an AFM pinning layer is not needed.
摘要:
Read sensors and associated methods of fabrication are disclosed. A read sensor as disclosed herein includes a first shield, a sensor stack including an antiparallel (AP) free layer, and insulating material disposed on the sensor stack. A aperture is formed through the insulating material above the sensor stack so that a subsequently deposited second shield is electrically coupled to the sensor stack through the aperture. The width of the aperture controls the current density that is injected into the top of the sensor stack. Also, hard bias structures may be formed to be electrically coupled to the sensor stack. The electrical coupling of the sensor stack and the hard bias structures allows current to laterally spread out as it passes through the sensor stack, and hence, provides a non-uniform current density.