Abstract:
A semiconductor device assembly includes a first semiconductor device having a first plurality of electrical contacts with a first average pitch, a second semiconductor device over the first semiconductor device and having a second plurality of electrical contacts with a second average pitch, and a signal routing structure between the first and second semiconductor devices and including a first plurality of conductive structures, each in contact with one of the first plurality of electrical contacts, a second plurality of conductive structures, each in contact with one of the second plurality of electrical contacts, and a pattern of parallel conductive lines between the first and second pluralities of conductive structures. The pattern of parallel conductive lines has a third average pitch less than the first and second average pitches, and pairs of conductive structures from the first and second pluralities are electrically coupled by different ones of the parallel conductive lines.
Abstract:
Embodiments of the present invention provide memory systems having a plurality of memory devices sharing an interface for the transmission of read data. A controller can identify consecutive read requests sent to different memory devices. To avoid data contention on the interface, for example, the controller can be configured to delay the time until read data corresponding to the second read request is placed on the interface.
Abstract:
Processing can occur in registers of a memory sub-system. A first plurality of registers coupled to the plurality of sense amplifiers can store the first plurality of bits received from the plurality of sense amplifiers. Processing circuitry coupled to the first plurality of registers can receive the first plurality of bits from the first plurality of registers and can perform an operation on the first plurality of bits to generate result bits. A second plurality of registers coupled to the processing circuitry and the plurality of registers can store the result bits received from the processing circuitry and can provide the result bits to a plurality of data input/output (I/O) lines prior to storing a second plurality of bits.
Abstract:
Error correcting codes (ECCs) have been proposed to be used in high frequency memory devices to detect errors in signals transmitted between a memory controller and a memory device. For high frequency memory devices, ECCs have delay characteristics of greater than one clock cycle. When the delay exceeds one clock cycle but is much less than two clock cycles, an entire second clock cycle must be added. By calculating and comparing the ECC value in a static logic circuit and a dynamic logic circuit, the logic delay is substantially reduced. In addition, the ECC value may be calculated and compared using two sets of static logic gates, where the second static logic gate is clocked by a clock signal that is delayed relative to the clock signal of the first set of logic gates.
Abstract:
Embodiments of the present invention provide memory systems having a plurality of memory devices sharing an interface for the transmission of read data. A controller can identify consecutive read requests sent to different memory devices. To avoid data contention on the interface, for example, the controller can be configured to delay the time until read data corresponding to the second read request is placed on the interface.
Abstract:
A memory system and method uses stacked memory device dice coupled to each other and to a logic die. The logic die may include a timing correction system that is operable to control the timing at which the logic die receives signals, such as read data signals, from each of the memory device dice. The timing correction controls the timing of the read data or other signals by adjusting the timing of respective strobe signals, such as read strobe signals, that are applied to each of the memory device dice. The memory device dice may transmit read data to the memory device at a time determined by when it receives the respective strobe signals. The timing of each of the strobe signals is adjusted so that the read data or other signals from all of the memory device dice are received at the same time.
Abstract:
Error correcting codes (ECCs) have been proposed to be used in high frequency memory devices to detect errors in signals transmitted between a memory controller and a memory device. For high frequency memory devices, ECCs have delay characteristics of greater than one clock cycle. When the delay exceeds one clock cycle but is much less than two clock cycles, an entire second clock cycle must be added. By calculating and comparing the ECC value in a static logic circuit and a dynamic logic circuit, the logic delay is substantially reduced. In addition, the ECC value may be calculated and compared using two sets of static logic gates, where the second static logic gate is clocked by a clock signal that is delayed relative to the clock signal of the first set of logic gates.
Abstract:
Error correcting codes (ECCs) have been proposed to be used in high frequency memory devices to detect errors in signals transmitted between a memory controller and a memory device. For high frequency memory devices, ECCs have delay characteristics of greater than one clock cycle. When the delay exceeds one clock cycle but is much less than two clock cycles, an entire second clock cycle must be added. By calculating and comparing the ECC value in a static logic circuit and a dynamic logic circuit, the logic delay is substantially reduced. In addition, the ECC value may be calculated and compared using two sets of static logic gates, where the second static logic gate is clocked by a clock signal that is delayed relative to the clock signal of the first set of logic gates.
Abstract:
Embodiments of the present invention provide memory systems having a plurality of memory devices sharing an interface for the transmission of read data. A controller can identify consecutive read requests sent to different memory devices. To avoid data contention on the interface, for example, the controller can be configured to delay the time until read data corresponding to the second read request is placed on the interface.
Abstract:
A memory system and method uses stacked memory device dice coupled to each other and to a logic die. The logic die may include a timing correction system that is operable to control the timing at which the logic die receives signals, such as read data signals, from each of the memory device dice. The timing correction controls the timing of the read data or other signals by adjusting the timing of respective strobe signals, such as read strobe signals, that are applied to each of the memory device dice. The memory device dice may transmit read data to the memory device at a time determined by when it receives the respective strobe signals. The timing of each of the strobe signals is adjusted so that the read data or other signals from all of the memory device dice are received at the same time.