摘要:
A lithium ion secondary cell having a high capacity, improved first charge/discharge efficiency and improved cycle performance is obtainable using as the negative electrode material a lithium-containing silicon oxide powder having the formula: SiLixOy wherein x and y are 0
摘要:
A non-aqueous electrolyte secondary battery negative electrode material is provided wherein a negative electrode active material containing a lithium ion-occluding and releasing material which has been treated with an organosilicon base surface treating agent is surface coated with a conductive coating. Using the negative electrode material, a lithium ion secondary battery having a high capacity and improved cycle performance is obtainable.
摘要:
A conductive silicon composite in which particles of the structure that silicon crystallites are dispersed in silicon dioxide are coated on their surfaces with carbon affords satisfactory cycle performance when used as the negative electrode material in a non-aqueous electrolyte secondary cell.
摘要:
A silicon composite comprises silicon particles whose surface is at least partially coated with a silicon carbide layer. It is prepared by subjecting a silicon powder to thermal CVD with an organic hydrocarbon gas and/or vapor at 900-1,400° C., and heating the powder for removing an excess free carbon layer from the surface through oxidative decomposition.
摘要:
Silicon composite particles are prepared by sintering primary fine particles of silicon, silicon alloy or silicon oxide together with an organosilicon compound. Sintering of the organosilicon compound results in a silicon-base inorganic compound which serves as a binder. Each particle has the structure that silicon or silicon alloy fine particles are dispersed in the silicon-base inorganic compound binder, and voids are present within the particle.
摘要:
A metallic silicon-containing composite in which metallic silicon nuclei are coated with an inert material which does not contribute to adsorption and desorption of lithium ions is a useful negative electrode material for lithium ion secondary batteries. Using the composite as a negative electrode active material, a lithium ion secondary battery having a high capacity and excellent cycle performance can be fabricated.
摘要:
Silicon composite particles are prepared by sintering primary fine particles of silicon, silicon alloy or silicon oxide together with an organosilicon compound. Sintering of the organosilicon compound results in a silicon-base inorganic compound which serves as a binder. Each particle has the structure that silicon or silicon alloy fine particles are dispersed in the silicon-base inorganic compound binder, and voids are present within the particle.
摘要:
A silicon oxide powder represented by the formula: SiOx wherein 1.05≦x≦1.5 and having a BET specific surface area of 5-300 m2/g is useful as a negative electrode material to construct a lithium ion secondary cell having a high capacity and improved cycle performance.
摘要翻译:由式:SiOx表示的氧化硅粉末,其中1.05 <= x <= 1.5,BET比表面积为5-300m 2 / g,可用作负极材料,以构建具有 高容量和改进的循环性能。
摘要:
An efficient method for producing a silicon oxide powder at a low cost is provided. This method comprises the steps of heating a powder mixture of a silicon dioxide powder and a metal silicon powder to a temperature of 1,100 to 1,450° C. in an inert gas or under reduced pressure to generate silicon monoxide gas, and precipitating the silicon monoxide gas on a surface of a substrate to produce the silicon oxide powder, and in this method, the silicon dioxide powder has an average particle diameter of up to 1 μm, and the metal silicon powder has an average particle diameter of 30 μm.
摘要:
A silicon-silicon oxide-lithium composite comprises a silicon-silicon oxide composite having such a structure that silicon grains having a size of 0.5-50 nm are dispersed in silicon oxide, the silicon-silicon oxide composite being doped with lithium. Using the silicon-silicon oxide-lithium composite as a negative electrode material, a lithium ion secondary cell having a high initial efficiency and improved cycle performance can be constructed.