摘要:
A metallic honeycomb body for supporting a catalyst comprises a flat plate and a corrugated plate; these plates are formed by a foil of stainless steel in which the steel contains more than 1% of Si and the surface of the steel is covered by a film which is mainly formed by an oxide chrome at a high temperature, and are mutually bonded by diffusion bonding.The chemical composition of the foil material is comprised of up to 0.2% of C, more than 1 to 5% of Si, 9 to 22% of Cr, up to 0.8% of Al, and as necessary, at least one member selected from the group of Nb, V, Mo W and REM (rare earth member) including Y.The metallic honeycomb body is formed by which said body is annealed at a vacuum degree of 10.sup.-2 to 10.sup.-4 Torr and in a temperature range of 1200.degree. to 1300.degree. C. for 1 to 30 minutes in a vacuum annealing furnace.
摘要:
According to the present invention, a strength of 120 to 200 kgf/mm.sup.2 in terms of 0.2% yield point and optionally a spring critical value of 55 to 150 kgf/mm.sup.2 are imparted to a high-strength stainless steel foil for corrugation by subjecting a thin sheet of a stainless steel comprising an alloy composed mainly of 10 to 40% by weight of Cr and 1 to 10% by weight of Al to final cold rolling and optionally subjecting the cold-rolled sheet to an aging treatment at a temperature in the range of from 80.degree. to 500.degree. C. after the completion of the final cold rolling. This enables corrugation to be effected at a high corrugation rate of 10 m/min or more.
摘要:
A metallic carrier for an automobile catalyst, comprising a metallic honeycomb and a jacket, characterized in that a foil material constituting the metallic honeycomb is comprised of an Fe-Cr-Al-base alloy and has high-temperature proof stresses of 22 kgf/mm.sup.2 or more and 11 kgf/mm.sup.2 or more respectively at 600.degree. C. and 700.degree. C. with the foil material as annealed at a temperature of the recrystallization temperature of the foil material or above.
摘要:
The present invention aims to prevent the occurrence of flaws in an Fe-Cr-Al alloy steel sheet, thereby improving the yield. In the present invention, a cast slab comprising an outer layer and an inner layer with the concentration of at least one element selected from Cr, Al and REM (REM being at least one element selected from the group consisting of rare earth elements including Y of lanthanoids) in the outer layer being 70% or less of that of the inner layer, is provided, heated, hot-rolled and cold-rolled to produce a steel sheet or a foil material.
摘要:
The present invention provides a stainless steel most suitable as a metal base material for the weight sensor substrate of an automobile airbag, a method for producing said stainless steel and said weight sensor; and the stainless steel sheet comprises a high aluminiferous ferritic stainless steel containing Al of 2.5 to 8 mass % and comprising, in mass, C: 0.025% or less, N: 0.025% or less, the sum of C and N being 0.030% or less, and Nb: 0.05 to 0.5%, with the balance consisting of Fe and unavoidable impurities. Further, said stainless steel sheet may further contain, in mass, one or more of V: 0.05 to 0.4%, Ti: 0.02 to 0.2%, and Zr: 0.02 to 0.2%. The present invention makes it possible to control the difference in the average linear expansion coefficient between said stainless steel sheet and crystallized glass for a weight sensor to less than 10% in the temperature range from 20° C. to 900° C. and thus to improve the adhesiveness of said stainless steel sheet with said crystallized glass.
摘要:
The present invention provides a stainless steel as a metal base material for a weight sensor substrate of an automobile airbag. The stainless steel sheet contains a high aluminiferous ferritic stainless steel containing, in mass, Al of 2.5 to 8%, C: 0.025% or less, N: 0.025% or less, the sum of C and N being 0.030% or less, and Nb: 0.05 to 0.5%, with the balance Fe and unavoidable impurities. Said stainless steel sheet may further contain, in mass, one or more of V: 0.05 to 0.4%, Ti: 0.02 to 0.2%, and Zr: 0.02 to 0.2%. The present invention controls the difference in the average linear expansion coefficient between said stainless steel sheet and crystallized glass for said weight sensor to less than 10% in the temperature range from 20° C. to 900° C. and thus to improve the adhesiveness of said stainless steel sheet with said crystallized glass.
摘要:
The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.
摘要:
The present invention provides optimal low chromium stainless steel preventing the deterioration in corrosion resistance at the weld zone in the case of multipass welding, superior in grain boundary corrosion resistance of the weld zone even in a harsh corrosive environment, simultaneously free from preferential corrosion at the heat affected zones near weld fusion lines, and further superior in manufacturability, that is, low chromium stainless steel containing, by mass %, C: 0.03% or less, N: 0.004 to 0.02%, Si: 0.2 to 1%, Mn: over 1.5 to 2.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 15%, Ni: 0.2 to 3.0%, and Al: 0.005 to 0.1%, further containing Ti: 4×(C %+N %) to 0.35%, and having a balance of Fe and unavoidable impurities, having a γp(%) expressed by a predetermined formula satisfying 80 or more, and satisfying Ti %×N %
摘要:
The present invention provides a stainless steel most suitable as a metal base material for the weight sensor substrate of an automobile airbag, a method for producing said stainless steel and said weight sensor; and the stainless steel sheet comprises a high aluminiferous ferritic stainless steel containing Al of 2.5 to 8 mass % and comprising, in mass, C: 0.025% or less, N: 0.025% or less, the sum of C and N being 0.030% or less, and Nb: 0.05 to 0.5%, with the balance consisting of Fe and unavoidable impurities. Further, said stainless steel sheet may further contain, in mass, one or more of V: 0.05 to 0.4%, Ti: 0.02 to 0.2%, and Zr: 0.02 to 0.2%. The present invention makes it possible to control the difference in the average linear expansion coefficient between said stainless steel sheet and crystallized glass for a weight sensor to less than 10% in the temperature range from 20° C. to 900° C. and thus to improve the adhesiveness of said stainless steel sheet with said crystallized glass.
摘要:
The present invention provides an optimum low-chromium stainless steel which prevents corrosion resistance degradation of a weld in the case of welding a low-chromium stainless steel utilizing martensite transformation in multiple passes (multipass), is excellent in weld intergranular corrosion resistance even in a severe corrosion environment, simultaneously avoids occurrence of preferential corrosion at the bond-bordering region of the weld heat-affected zone, and is also excellent in productivity, which low-chromium stainless steel comprises, in mass %, C: 0.015 to 0.025%, N: 0.008 to 0.014%, Si: 0.2 to 1.0%, Mn: 1.0 to 1.5%, P: 0.04% or less, S: 0.03% or less, Cr: 10 to 13%, Ni 0.2 to 1.5%, and Al: 0.005 to 0.1% or less, and further comprises Ti: 6×(C %+N %) or greater and 0.25% or less, the balance being Fe and unavoidable impurities, and the contents of the elements satisfy specified expressions.