摘要:
A test structure of a semiconductor device is provided. The test structure includes a semiconductor substrate, a transistor which includes a gate electrode formed on first and second active regions defined within the semiconductor substrate, and first and second junction regions which are arranged at both sidewalls of the gate electrode to reside within the first and second active regions and are silicided, and first and second pads through which electrical signals are applied to the silicided first and second junction regions and detected and which are formed on the same level as the gate electrode or the semiconductor substrate.
摘要:
A test structure of a semiconductor device is provided. The test structure includes a semiconductor substrate, a transistor which includes a gate electrode formed on first and second active regions defined within the semiconductor substrate, and first and second junction regions which are arranged at both sidewalls of the gate electrode to reside within the first and second active regions and are silicided, and first and second pads through which electrical signals are applied to the silicided first and second junction regions and detected and which are formed on the same level as the gate electrode or the semiconductor substrate.
摘要:
A test structure of a semiconductor device with improved test reliability is provided. The test structure includes first and second active regions which are electrically isolated from each other and on which silicided first and second junction regions are formed, respectively, a semiconductor substrate or a well which is formed on lower parts of the first and second junction regions and has a conductivity type different from the first and second junction regions, and first and second pads through which an electrical signal is applied to the first and second junction regions and detected, and which are formed on the same level as a lower part of a metal layer or on the same level as the semiconductor substrate.
摘要:
A test structure of a semiconductor device with improved test reliability is provided. The test structure includes first and second active regions which are electrically isolated from each other and on which silicided first and second junction regions are formed, respectively, a semiconductor substrate or a well which is formed on lower parts of the first and second junction regions and has a conductivity type different from the first and second junction regions, and first and second pads through which an electrical signal is applied to the first and second junction regions and detected, and which are formed on the same level as a lower part of a metal layer or on the same level as the semiconductor substrate.
摘要:
A method of manufacturing a semiconductor device having a metal conducting layer is provided. A metal conducting layer pattern having the metal conducting layer is formed on a semiconductor substrate. A portion of the metal conducting layer is partially exposed on the semiconductor substrate. The semiconductor substrate having the metal conducting layer pattern is loaded into a reaction chamber. A first silicon source gas is flowed into the reaction chamber. A silicon oxide layer is formed on the semiconductor substrate having the metal conducting layer pattern by supplying a second silicon source gas and an oxygen source gas into the reaction chamber.
摘要:
A method of fabricating a semiconductor device and a semiconductor device fabricated thereby. The method of fabricating the semiconductor device includes forming gate electrodes on a semiconductor substrate; forming source/drain regions within the semiconductor substrate so as to be located at both sides of each of the gate electrodes; forming a nickel silicide layer on surfaces of the gate electrodes and the source/drain regions by evaporating nickel or nickel alloy on the semiconductor substrate formed with the gate electrodes and the source/drain regions and then performing a thermal process on the nickel or the nickel alloy; forming an interlayer insulating layer, which is formed with contact holes through which a surface of the nickel silicide layer is exposed, on a surface obtained after the above processes have been performed; forming an ohmic layer by evaporating a refractory metal conformably along the contact holes, the refractory metal being converted to silicide at a temperature of 500° C. or more; forming a diffusion barrier on the ohmic layer conformably along the contact holes; and forming a metal layer by burying a metal material within the contact holes.