摘要:
A test structure of a semiconductor device with improved test reliability is provided. The test structure includes first and second active regions which are electrically isolated from each other and on which silicided first and second junction regions are formed, respectively, a semiconductor substrate or a well which is formed on lower parts of the first and second junction regions and has a conductivity type different from the first and second junction regions, and first and second pads through which an electrical signal is applied to the first and second junction regions and detected, and which are formed on the same level as a lower part of a metal layer or on the same level as the semiconductor substrate.
摘要:
A test structure of a semiconductor device with improved test reliability is provided. The test structure includes first and second active regions which are electrically isolated from each other and on which silicided first and second junction regions are formed, respectively, a semiconductor substrate or a well which is formed on lower parts of the first and second junction regions and has a conductivity type different from the first and second junction regions, and first and second pads through which an electrical signal is applied to the first and second junction regions and detected, and which are formed on the same level as a lower part of a metal layer or on the same level as the semiconductor substrate.
摘要:
A test structure of a semiconductor device is provided. The test structure includes a semiconductor substrate, a transistor which includes a gate electrode formed on first and second active regions defined within the semiconductor substrate, and first and second junction regions which are arranged at both sidewalls of the gate electrode to reside within the first and second active regions and are silicided, and first and second pads through which electrical signals are applied to the silicided first and second junction regions and detected and which are formed on the same level as the gate electrode or the semiconductor substrate.
摘要:
A test structure of a semiconductor device is provided. The test structure includes a semiconductor substrate, a transistor which includes a gate electrode formed on first and second active regions defined within the semiconductor substrate, and first and second junction regions which are arranged at both sidewalls of the gate electrode to reside within the first and second active regions and are silicided, and first and second pads through which electrical signals are applied to the silicided first and second junction regions and detected and which are formed on the same level as the gate electrode or the semiconductor substrate.
摘要:
An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
摘要:
An example embodiments are structures and methods for forming an FET with embedded stressor S/D regions (e.g., SiGe), a doped layer below the embedded S/D region adjacent to the isolation regions, and a stressor liner over reduced spacers of the FET gate. An example method comprising the following. We provide a gate structure over a first region in a substrate. The gate structure is comprised of gate dielectric, a gate, and sidewall spacers. We provide isolation regions in the first region spaced from the gate structure; and a channel region in the substrate under the gate structure. We form S/D recesses in the first region in the substrate adjacent to the sidewall spacers. We form S/D stressor regions filling the S/D recesses. The S/D stressor regions can be thicker adjacent to the gate structure than adjacent to the isolation regions; We implant dopant ions into the S/D stressor regions and into the substrate below the S/D stressor regions adjacent to the isolation regions to form upper stressor doped regions.
摘要:
The present invention relates to enhancing MOSFET performance with the corner stresses of STI. A method of manufacturing a MOS device comprises the steps of: providing a semiconductor substrate; forming trenches on the semiconductor substrate and at least a pMOS region and at least an nMOS region surrounded by the trenches; filling the trenches with a dielectric material having a stress; removing at least the dielectric material having a stress in the trenches which is adjacent to a position where a channel is to be formed on each of the pMOS and nMOS regions so as to form exposed regions; filling the exposed regions with a insulating material; and forming pMOS and nMOS devices on the pMOS region and the nMOS region, respectively, wherein each of the pMOS and nMOS devices comprises a channel, a gate formed above the channel, and a source and a drain formed at both sides of the channel; wherein in a channel length direction, the boundary of each exposed region is substantially aligned with the boundary of the position of the channel, or the boundary of each exposed region extends along the channel length direction to be aligned with the boundary of corresponding pMOS or nMOS region.
摘要:
Technologies are generally described for providing solar device or LED device structures and methods for manufacturing the same, which may allow for making ultra-thin semiconductor plate devices with flexible contact arrangements at the meantime of maintaining or improving performance of solar devices, improving the utility of the semiconductor plate material, and increasing the fabrication through-put and yield of the solar and LED devices.
摘要:
The present disclosure provides a semiconductor device and a method for manufacturing the same. The semiconductor device comprises: an SOI wafer comprising a semiconductor substrate, a buried insulation layer, and a semiconductor layer, wherein the buried insulation layer is disposed on the semiconductor substrate, and the semiconductor layer is disposed on the buried insulation layer; a plurality of MOSFETs being formed adjacently to each other in the SOI wafer, wherein each of the MOSFETs comprises a respective backgate being formed in the semiconductor substrate; and a plurality of shallow trench isolations, each of which being formed between respective adjacent MOSFETs to isolate the respective adjacent MOSFETs from each other, wherein the respective adjacent MOSFETs share a common backgate isolation region under and in direct contact with the respective backgate in the semiconductor substrate, and a PNP junction or an NPN junction is formed by the common backgate isolation region and the respective backgate of the respective adjacent MOSFETs. According to the present disclosure, respective backgates of two adjacent MOSFETs are isolated from each other by the shallow trench isolation. Furthermore, the two adjacent MOSFETs are also isolated from each other by the PNP or NPN junction formed by the respective backgates of the two adjacent MOSFETs and the common backgate isolation. As a result, this device structure has a better insulation effect over the prior art MOSFET and it greatly reduces the possibility of breakthrough.
摘要:
The present application discloses a non-volatile memory device, comprising a semiconductor fin on an insulating layer; a channel region at a central portion of the semiconductor fin; source/drain regions on both sides of the semiconductor fin; a floating gate arranged at a first side of the semiconductor fin and extending in a direction further away from the semiconductor fin; and a first control gate arranged on top of the floating gate or covering top and sidewall portions of the floating gate. The non-volatile memory device reduces a short channel effect, has an increased memory density, and is cost effective.