摘要:
The integrity of the interface and adhesion between a barrier or capping layer and a Cu or Cu alloy interconnect member is significantly enhanced by delaying and/or slowly ramping up the introduction of silane to deposit a silicon nitride capping layer after treating the exposed planarized surface of the Cu or Cu alloy with an ammonia-containing plasma. Other embodiments include purging the reaction chamber with nitrogen at elevated temperature to remove residual gases prior to introducing the wafer for plasma treatment.
摘要:
Reliably capped Cu interconnects are formed with a significant reduction in the amount and size of hillocks by reducing the time during which the Cu interconnect is exposed to elevated temperatures for plasma surface treatment and capping layer deposition. Embodiments of the present invention include maintaining a continuous plasma during surface treatment to remove copper oxide and capping layer deposition, and exposing the wafer to elevated temperatures to no greater than 60 seconds in the reaction chamber.
摘要:
A method for removing discoloration and corrosion of an exposed copper surface and for forming a nitride capping layer on top of the surface provides an in-situ process in which the reactive plasma ambient is constantly maintained during a transition from the surface treatment step to the deposition step for forming the nitride capping layer. Permanently maintained plasma avoids an renewed formation of discoloration on the cleaned copper surface during the transition to the deposition step and at the beginning of the deposition step when silane gas is introduced into the plasma ambient. Moreover, the overall process time is significantly reduced.
摘要:
A process for super low deposition rate plasma enhanced chemical vapor deposition (PECVD) of undoped oxide on a single station deposition is provided. A very thin PECVD oxide layer used, for instance, as an oxide liner between a polysilicon gate and a nitride spacer, may be produced in a PECVD chamber with a reduced flow rate of silane, nitrous oxide and molecular nitrogen. The deposition rate may be lowered to 20 angstroms/minute, for example, with this long deposition time providing a better process control. At the same time, the film is dense, silicon rich, highly compressive, provides excellent step coverage and acceptable thickness uniformity.
摘要:
The adhesion of a barrier or capping layer to a Cu or Cu alloy interconnect member is significantly enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member, after CMP, in a reaction chamber with a plasma containing ammonia and nitrogen for a brief period of time to reduce the surface oxide and then introducing silane into the reaction chamber to deposit the barrier layer, e.g., silicon nitride, under high density plasma conditions in the presence of nitrogen. The presence of nitrogen during plasma oxide layer reduction and plasma barrier layer deposition significantly improves adhesion of the barrier layer to the Cu or Cu alloy surface.
摘要:
A method of eliminating voids in the interlayer dielectric material of 0.18-&mgr;m flash memory semiconductor devices and a semiconductor device formed by the method. The present invention provides a method for eliminating voids in the interlayer dielectric of a 0.18-&mgr;m flash memory semiconductor device by providing a first BPTEOS layer, using a very low deposition rate and having a thickness in a range of approximately 3 kÅ; and providing a second BPTEOS layer, using a standard deposition rate and having a thickness in a range of approximately 13 kÅ, wherein both layers have an atomic dopant concentration of approximately 4.5% B and approximately 5% P. This two-step deposition process completely eliminates voids in the ILD for a 0.5-&mgr;m distance (gate-to-gate) as well as 0.38-&mgr;m distance (gate-to-gate) which is the future flash technology. A low dopant/TEOS flow performed at a higher pressure during the deposition of the first layer provides an excellent gap-filling capability which eliminates voiding. Further, the present invention has the advantage of in-situ deposition of the void-free ILD0 layer of the 0.18-&mgr;m flash memory semiconductor device having a sound dopant concentration.
摘要:
A method of eliminating voids in the interlayer dielectric material of 0.18-&mgr;m flash memory semiconductor devices and a semiconductor device formed by the method. The present invention provides a method for eliminating voids in the interlayer dielectric of a 0.18-&mgr;m flash memory semiconductor device by providing a first BPTEOS layer, using a very low deposition rate and having a thickness in a range of approximately 3 kÅ; and providing a second BPTEOS layer, using a standard deposition rate and having a thickness in a range of approximately 13 kÅ, wherein both layers have an atomic dopant concentration of approximately 4.5% B and approximately 5% P. This two-step deposition process completely eliminates voids in the ILD for a 0.5-&mgr;m distance (gate-to-gate) as well as 0.38-&mgr;m distance (gate-to-gate) which is the future flash technology. A low dopant/TEOS flow performed at a higher pressure during the deposition of the first layer provides an excellent gap-filling capability which eliminates voiding. Further, the present invention has the advantage of in-situ deposition of the void-free ILD0 layer of the 0.18-&mgr;m flash memory semiconductor device having a sound dopant concentration.
摘要:
A process for very low deposition rate plasma-enhanced chemical vapor deposition (PECVD) of nitride is provided. A nitride layer is used, for example, as a precursor for nitride spacers formed on the sidewalls of a polysilicon gate. The nitride layer may be produced in a PECVD chamber, using an increased flow rate of nitrogen applied to the chamber, an increased flow rate of molecular nitrogen, and a reduced flow rate of ammonia. The RF power is reduced, as well as the reactor pressure. This produces a nitride layer that exhibits improvements in density, refractive index, step coverage, and thickness non-unformity within a wafer and from wafer-to-wafer.
摘要:
The electromigration resistance of capped Cu or Cu alloy interconnects is significantly improved by pumping out the deposition chamber after treating the exposed planarized surface of the Cu or Cu alloy with an ammonia-containing plasma, introducing NH3 and N2 into the deposition chamber, and then ramping up the introduction of SiH4 prior to initiating deposition of a silicon nitride capping layer. Embodiments include ramping up the introduction of SiH4 in two stages prior to initiating plasma enhanced chemical vapor deposition of the silicon nitride capping layer.
摘要:
Semiconductor devices with improved data retention are formed by depositing an undoped oxide liner on spaced apart transistors followed by in situ deposition of a BPSG layer. Embodiments include depositing an undoped silicon oxide liner derived from TEOS, as at a thickness of 400 Å to 600 Å, on transistors of a non-volatile semiconductor device, as by sub-atmospheric chemical vapor deposition, followed by depositing the BPSG layer in the same deposition chamber.