摘要:
In a method according to the present invention, a substrate thinning process is performed on a bumped substrate prior to the ultimate solder reflow process to heal bump defects caused by the substrate thinning process. Concurrently, the risk of substrate breakage is reduced compared to the prior art process since the number of process steps, requiring handling of thinned substrates, is reduced.
摘要:
In a method according to the present invention, a substrate thinning process is performed on a bumped substrate prior to the ultimate solder reflow process to heal bump defects caused by the substrate thinning process. Concurrently, the risk of substrate breakage is reduced compared to the prior art process since the number of process steps, requiring handling of thinned substrates, is reduced.
摘要:
The integrity of the interface and adhesion between a barrier or capping layer and a Cu or Cu alloy interconnect member is significantly enhanced by delaying and/or slowly ramping up the introduction of silane to deposit a silicon nitride capping layer after treating the exposed planarized surface of the Cu or Cu alloy with an ammonia-containing plasma. Other embodiments include purging the reaction chamber with nitrogen at elevated temperature to remove residual gases prior to introducing the wafer for plasma treatment.
摘要:
Reliably capped Cu interconnects are formed with a significant reduction in the amount and size of hillocks by reducing the time during which the Cu interconnect is exposed to elevated temperatures for plasma surface treatment and capping layer deposition. Embodiments of the present invention include maintaining a continuous plasma during surface treatment to remove copper oxide and capping layer deposition, and exposing the wafer to elevated temperatures to no greater than 60 seconds in the reaction chamber.