Abstract:
A crystal unit comprises an AT-cut crystal blank, and an excitation electrode formed on each of opposing main surfaces of the crystal blank in an oscillation region of the crystal blank. The ratio b/a is 0.014 or less, and preferably 0.012 or less where a represents the thickness of the crystal blank in the oscillation region and b represents the thickness of the excitation electrode. The thickness a is typically 5 μm or less.
Abstract:
A crystal unit comprises an AT-cut crystal blank, and an excitation electrode formed on each of opposing main surfaces of the crystal blank in an oscillation region of the crystal blank. The ratio b/a is 0.014 or less, and preferably 0.012 or less where a represents the thickness of the crystal blank in the oscillation region and b represents the thickness of the excitation electrode. The thickness a is typically 5 μm or less.
Abstract:
A crystal unit has a crystal blank having a hole defined in at least one principal surface thereof, the crystal blank having a region of a reduced thickness including the hole, the region serving as a vibrating region, excitation electrodes disposed respectively on opposite principal surfaces of the crystal blank in the vibrating region, extension electrodes extending respectively from the excitation electrodes to respective opposite ends of one side of the crystal blank, and a casing having a step formed therein. The opposite ends of the one side of the crystal blank are fixed to the step by a joining member. The crystal blank has a notched portion defined therein between the one side and the vibrating region, the notched portion extending from at least one transverse edge of the crystal blank in a transverse direction of the crystal blank.
Abstract:
There is provided an optical laminate excellent which secures adhesiveness between the (meth)acrylic resin film (base material film) and a hard coat layer, and can prevent a reduction in scratch resistance. An optical laminate according to an embodiment of the present invention includes: a base material layer formed of a (meth)acrylic resin film; a hard coat layer formed by applying, to the (meth)acrylic resin film, a composition for forming a hard coat layer containing a curable compound and inorganic nanoparticles; and a penetration layer having a thickness of 1.2 μm or more, the penetration layer being formed between the base material layer and the hard coat layer by penetration of the composition for forming a hard coat layer into the (meth)acrylic resin film, wherein a content of the inorganic nanoparticles is 1.5 wt % to 50 wt % with respect to a total of the curable compound and the inorganic nanoparticles.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.
Abstract:
There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed, and also the entirety of the magnet to be densely sintered without making a gap between a main phase and a grain boundary phase in the sintered magnet. Coarsely-milled magnet powder is further milled by a bead mill in an organic solvent. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.
Abstract:
A composition for a silicone resin containing a poly(methyl silsesquioxane) derivative having an alkoxysilyl group at an end of a molecule, and fine metal oxide particles having a reactive functional group on the surface thereof, wherein the composition further contains at least one compound selected from the group consisting of disilanol derivatives having silanol groups at both ends of a molecule and a monofunctional silane derivative represented by the formula (II): wherein X is an alkoxy group or a halogen atom. The silicone resin composition of the present invention can be suitably used as, for example, materials for encapsulating photosemiconductor elements for use in backlights for liquid crystal displays, traffic lights, outdoor big displays, advertisement sign boards, and the like.
Abstract:
A silicone resin composition obtainable by reacting a bifunctional alkoxysilane and a trifunctional alkoxysilane in the presence of a dispersion of fine metal oxide particles. The silicone resin composition is suitably used in backlights for liquid crystal displays, traffic lights, outdoor big displays, advertisement sign boards, and the like.
Abstract:
Provided are a spiral type membrane element that can ensure a larger amount of electric power without performing a cumbersome work and a spiral type membrane filtering device having the element, as well as a membrane filtering device managing system and a membrane filtering device managing method using the device. The spiral type membrane element comprises a sensor for detecting a property of liquid, a power generating section that generates electric power by using said liquid, and a wireless transmitting section that receives the electric power supplied from said power generating section and wirelessly transmits a detection signal from said sensor. By generating electric power in the power generating section with use of the liquid detected by the sensor, a larger amount of electric power can be ensured without performing a cumbersome work.
Abstract:
An object of the present invention is to provide a thermally conductive sheet having an improved electrical insulating property and a method of producing the same. A thermally conductive sheet includes a resin composition that contains a silicone resin and inorganic particles, wherein the inorganic particles include metal oxide particles that have a particle diameter of 1-100 nm and are dispersed in the silicone resin while being chemically bonded to the silicone resin.