摘要:
An engine start system which may be employed in automotive idle stop systems. To start an engine, the system brings a pinion gear into engagement with a ring gear coupled to the engine and turns on an electric motor to rotate the ring gear through the pinion gear to crank the engine. When it is requested to start the engine during deceleration of the engine before stop thereof, the system thrusts the pinion into engagement with the ring gear and then turns on the motor to rotate the pinion gear, in other words, delays the activation of the motor until after the pinion gear has engaged the ring gear. This minimizes mechanical impact or noise arising from the engagement of the pinion gear with the ring gear and improves the reliability in engagement with the ring gear during the deceleration of the engine and durability of the system.
摘要:
In a system, an angle sensor outputs a pulse each time an output shaft of an internal combustion engine rotates by a preset angle, and a calculator calculates speed-change information indicative of a change in a speed of rotation of the output shaft based on the pulses outputted from the angle sensor. A determiner determines, based on the speed-change information, whether at least one of the pulses outputted from the angle sensor represents a proper timing for a preset of a pinion of a starter with a ring gear mounted on the output shaft. A pinion engaging unit shifts the pinion toward the ring gear so that the pinion is engaged with the ring gear when it is determined that the at least one of the pulses outputted from the angle sensor represents the proper timing for the preset of the pinion with the ring gear.
摘要:
In a system for driving a starter with a pinion so that the starter rotates a ring gear coupled to a crankshaft of an internal combustion engine to crank the internal combustion engine during a drop of a rotational speed of the crankshaft by automatic-stop control of the internal combustion engine, a predictor predicts a future trajectory of the drop of the rotational speed of the crankshaft based on information associated with the drop of the rotational speed of the crankshaft. A determiner determines a timing of the driving of the starter based on the future trajectory of the drop of the rotational speed of the internal combustion engine.
摘要:
A control device performs fuel injection without cranking when engine-speed Ne is within a first-range (Ne>N1) and an engine-restart request occurs. The device performs the cranking after the synchronization in rotation-speed between pinion and ring gears, and the gear meshing operation between them when the engine-speed Ne is within a second range (N1≧Ne>N2) and the engine-restart request occurs. The device performs the cranking after the gear meshing operation and drives a starter to rotate the pinion gear when the engine-speed Ne is within a third-range (N3≧Ne) and the above request occurs. When the above request occurs in an engine restart ready-range (N2≧Ne>N3), the control device performs the cranking after the engine-speed Ne is decreased to a value within the third-range (N3≧Ne) and after the completion of the gear meshing operation.
摘要:
In an engine starting system, when a first solenoid is energized at a first timing in response to any one of a turning on of a starter switch and an occurrence of an engine restart request, a solenoid actuator shifts a pinion to a ring gear to be engaged with the ring gear. When a second solenoid is energized, a solenoid switch member energizes a motor. A determiner determines a second timing of energization of the second solenoid after the first timing so that a first delay time from the first timing to the second timing when the first timing is responsive to the turning on of the starter switch is different from a second delay time from the first timing to the second timing when the first timing is responsive to the occurrence of the engine restart request.
摘要:
In a system, a predictor predicts a future trajectory of a rotational speed of a crankshaft during drop of the crankshaft's rotational speed in a forward rotational direction due to automatic stop of an engine. An engaging unit , in response to when an engine restart condition is met during the drop of the crankshaft's rotational speed, a pinion to a ring gear for engaging the pinion with the ring gear. An engagement determiner determines, based on the future trajectory of the crankshaft's rotational speed, whether the pinion and the ring gear will be shifted to engagement state therebetween during reverse rotation of the output shaft. A controller controls, based on a result of the determination by the engagement determiner, at least one of: a start timing to shift the pinion to the ring gear by the engaging unit, and a start timing to energize the motor.
摘要:
A starter control apparatus is provided which is used with a starter equipped with a pinion engageable with a ring gear coupled to an output shaft of an engine and a motor operable to rotate the pinion to crank the engine. The starter control apparatus works to determine whether the engine has been placed to continue to run by itself after cranked by the motor or not. When such a condition is encountered, the starter control apparatus releases the engagement of the pinion with the ring gear while keeping the pinion rotated by the motor, thereby decreasing the torque exerted by the ring gear on the pinion to minimize the wear of the pinion.
摘要:
A ring gear is connected to a crank shaft of an engine. A pinion is placed to face to the ring gear. When the engine is started, an ECU performs cranking of the engine under a state where the ring gear and the pinion are in mesh. The ECU releases the mesh state of the ring gear and the pinion after completion of the cranking of the engine. In particular, the ECU performs dispersion control to increase a degree of dispersion of a mesh portion of the ring gear which is meshed with the pinion when the rotation of the ring gear is stopped according to the engine stop. The dispersion control prevents the mesh portion of the ring gear and the mesh portion of the pinion from progressing abrasion and avoiding defect.
摘要:
In a control device, an engine self-restart means tries the engine restart when an engine restart request is issued while the engine rotation speed is within a first rotation speed range. A pre-gear synchronizing control means executes gear rotation speed synchronization between pinion and ring gears, and then retries the engine restart when the engine restart request is issued while the engine rotation-speed is within a second rotation speed range. A pre-gear meshing control means executes gear-meshing between the pinion and ring gears and then retries the engine restart when the engine restart request is issued while the engine rotation speed is within a third rotation speed range. On detecting the engine-restart failure of the engine self-restart control, the control device prohibits the execution of pre-gear synchronizing control until a predetermined time counted form the failure detection time is elapsed, and executes the pre-gear meshing control after the predetermined time period is elapsed.
摘要:
In a system, a pinion shift unit starts shift of a pinion to a ring gear for engagement therebetween during an internal combustion engine coasting in a forward direction after an automatic stop of the internal combustion engine. An engagement determining unit determines whether the pinion and the ring gear have any one of first and second positional relationships therebetween. The first positional relationship represents that the pinion is at least partly engaged with the ring gear. The second positional relationship represents that the pinion is in abutment with the ring gear. When an engine restart condition is met before it is determined that the pinion and the ring gear have any one of first and second positional relationships therebetween after the start of the shift of the pinion to the ring gear, a rotation adjusting unit adjusts a start timing of rotation of the pinion.