Abstract:
An engine-equipped vehicle capable of preventing gear noise and gear wear when the engine is started is provided. A multicylinder engine, a gear transmission that shifts power from the multicylinder engine by a shift operation, a centrifugal clutch arranged in a power transmission path from the multicylinder engine to the gear transmission, and an electronic control device that controls an operation of the multicylinder engine are included and the engine is configured to be started with a partial cylinder operation start where under control of the electronic control device, only some cylinders are operated and an operation of other cylinders is stopped.
Abstract:
A method of controlling an engine and a transmission of a vehicle includes: determining, by a controller, whether the engine is restarted after releasing the vehicle's SSC (Start & Stop coasting) or whether the vehicle is accelerating during NCC (Neutral Coasting control), determining an RPM and gear stage of the transmission if it is determined that the engine is restarted after releasing the vehicle's SSC or the vehicle is accelerating during NCC, determining a mild hybrid starter and generator (MHSG) target RPM and an MHSG target RPM gradient of the vehicle, performing, by the controller, MHSG RPM control of the vehicle to follow the MHSG target RPM and the MHSG target RPM gradient, determining whether the MHSG RPM slips compared to the MHSG target RPM, and performing proportional-integral-derivative (PID) control to follow the MHSG target RPM if the MHSG RPM slips compared to the MHSG target RPM.
Abstract:
A method of controlling a motor assembly for starting an engine and driving a balance shaft includes: determining whether starting or restarting of an engine is desired; operating an actuator such that a motor shaft is moved forward when the starting or restarting of the engine is desired; and starting or restarting the engine by rotating a motor and by driving a start gear, after the operating the actuator.
Abstract:
A method for diagnosing a fault mode in a system includes recording a hierarchical precedence rule assigning a priority level to fault modes of the system, and recording, in a fault report matrix, fault reports indicative of a corresponding one or more of the fault modes. The method also includes using the hierarchical precedence rule to determine the assigned relative priority level for the fault reports in response to a predetermined condition, e.g., a requested engine starting event, and identifying a root cause subsystem as a subsystem having the highest assigned priority level. A control action executed via the controller identifies the root cause subsystem by recording a diagnostic code and/or transmitting a message. The system is also disclosed, as is a computer-readable medium programmed with instructions embodying the method.
Abstract:
According to one or more aspects, a dual controller area network (CAN) is used to start a vehicle. A dual CAN bus network includes a first CAN (CAN1) bus and a second CAN (CAN2) bus. A transmission control unit (TCU) is in communication with an engine control unit (ECU) via the dual CAN bus network. The ECU controls actuation of a starter motor based on signals from the CAN1 bus and signals from the CAN2 bus sent by the TCU. Actuation of the starter motor places an engine of the vehicle in a starting mode.
Abstract:
A system for detecting operation of a motor includes a ripple voltage detector module including a ripple voltage detector unit, an input operatively connected to the ripple voltage detector unit and connectable to an alternator, and an output operatively connected to the ripple voltage detector unit and connectable to a starter motor control system. The ripple voltage detector module provides a motor operation signal to the starter motor control system upon detection of a ripple voltage produced by the alternator.
Abstract:
An engine starting apparatus is equipped with a starter which, when it is required to start an engine, moves a pinion to establish engagement with a ring gear coupled to the engine and energizes an electric motor to produce and transmit torque to the ring gear through the pinion for cranking the engine. When the rate of decrease in current flowing in the electric motor or the rate of rise in voltage appearing at a terminal of the starter or a power supply for the electric motor exceeds a given value after the engine starts being cranked, the engine starting apparatus works as a firing-up determiner to determine that the engine has been fully fired up.
Abstract:
Outdoor power equipment includes an internal combustion engine including an electric motor, a battery receiving port, a rechargeable battery removably attached to the battery receiving port, wherein the rechargeable battery is configured to power the electric motor to start the engine, an implement driven by the internal combustion engine, a release mechanism movable to an engaged position to put the implement in a ready-to-run condition in which the implement is ready to be driven by the engine, a run sensor configured to detect the ready-to-run condition, a switch actuated by the release mechanism, and a control module coupled to the switch so that the switch provides a signal to the control module when the release mechanism is in the engaged position and the control module turns on the electric motor to start the engine in response to the signal from the switch and the run sensor detecting the ready-to-run condition.
Abstract:
A self-contained starting module for outdoor power equipment that has control circuit and a start button. The starting module includes internal control circuit that can be either microprocessor based or analog. The control circuit receives a start signal from a start button of the starting module. The control circuit monitors for the presence of an enable device and, upon activation of the start button and the presence of the enable device, provides electric power to the electric load of the power equipment. When the start button is depressed for longer than a minimum engagement period, the control circuit initiates operation of the engine. If the start button is pressed for less than the minimum engagement period, the control circuit activates the electric load for an auxiliary period without starting the engine. During engine operation, if the start button is depressed, the operation of the engine is terminated.
Abstract:
An engine starting system for an engine is equipped with a pinion, an electromagnetic actuator, and a controller. When energized, the electromagnetic actuator produces a magnetic attraction to move the pinion straight toward a ring gear coupled to an engine for starting the engine. The controller is designed to selectively provide a small amount of current to the electromagnetic actuator and a large amount of current to the electromagnetic actuator. When it is required to minimize the level of noise arising from mechanical contact of the pinion with the ring gear, the controller provides the small amount of current to the electromagnetic actuator to slow the movement of the pinion toward the ring gear, thereby lessening the impact of the pinion on the ring gear.