摘要:
The semiconductor device according to one of the aspects of the present invention includes a semiconductor substrate of a first conductivity type, having upper and lower surfaces. A collector region of a second conductivity type is formed on the lower surface of the semiconductor substrate, and a collector electrode is formed on the collector region. Also, at least one pair of isolation regions of the second conductivity type are formed extending from the upper surface of the semiconductor substrate to the collector layer for defining a drift region of the first conductivity type, in conjunction with the collector region. A base region of the second conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the drift region, and an emitter region of the first conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the base region. A gate electrode is formed opposing to the base region via an insulating layer. An emitter electrode is formed on the emitter region. The collector layer has thickness in the range between 17 μm to 50 μm.
摘要:
An N−-type silicon substrate (1) has a bottom surface and an upper surface which are opposed to each other. In the bottom surface of the N−-type silicon substrate (1), a P-type impurity diffusion layer (3) of high concentration is entirely formed by diffusing a P-type impurity. In the upper surface of the N−-type silicon substrate (1), a P-type isolation region (2) is partially formed by diffusing a P-type impurity. The P-type isolation region (2) has a bottom surface reaching an upper surface of the P-type impurity diffusion layer (3). As viewed from the upper surface side of the N−-type silicon substrate (1), the P-type isolation region (2) is formed, surrounding an N− region (1a) which is part of the N−-type silicon substrate (1). The N− region (1a) surrounded by the P-type isolation region (2) is defined as an element formation region of the N−-type silicon substrate (1). Thus obtained are a semiconductor device and a method of manufacturing the same, and a semiconductor substrate and a method of manufacturing the same, which make it possible to retain bidirectional breakdown voltages and ensure high reliability.
摘要:
The semiconductor device according to one of the aspects of the present invention includes a semiconductor substrate of a first conductivity type, having upper and lower surfaces. A collector region of a second conductivity type is formed on the lower surface of the semiconductor substrate, and a collector electrode is formed on the collector region. Also, at least one pair of isolation regions of the second conductivity type are formed extending from the upper surface of the semiconductor substrate to the collector layer for defining a drift region of the first conductivity type, in conjunction with the collector region. A base region of the second conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the drift region, and an emitter region of the first conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the base region. A gate electrode is formed opposing to the base region via an insulating layer. An emitter electrode is formed on the emitter region. The collector layer has thickness in the range between 17 μm to 50 μm.
摘要:
A second impurity region is surrounded by a first impurity region at a first main surface. A third impurity region of the first main surface sandwiches the second impurity region with the first impurity region. Fourth and fifth impurity regions of a second main surface sandwich the first impurity region with the second impurity region. A control electrode layer is opposite to the second impurity region with an insulating film interposed. That portion of the second main surface which is opposite to the portion of the first main surface where the first impurity region is formed surrounds the regions for forming the fourth and fifth impurity regions of the second main surface, and it is a region of the first conductivity type or a region of the second conductivity type having impurity concentration not higher than that of the first impurity region.
摘要:
The semiconductor device according to one of the aspects of the present invention includes a semiconductor substrate of a first conductivity type, having upper and lower surfaces. A collector region of a second conductivity type is formed on the lower surface of the semiconductor substrate, and a collector electrode is formed on the collector region. Also, at least one pair of isolation regions of the second conductivity type are formed extending from the upper surface of the semiconductor substrate to the collector layer for defining a drift region of the first conductivity type, in conjunction with the collector region. A base region of the second conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the drift region, and an emitter region of the first conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the base region. A gate electrode is formed opposing to the base region via an insulating layer. An emitter electrode is formed on the emitter region. The collector layer has thickness in the range between 17 μm to 50 μm.
摘要:
A second impurity region is surrounded by a first impurity region at a first main surface. A third impurity region of the first main surface sandwiches the second impurity region with the first impurity region. Fourth and fifth impurity regions of a second main surface sandwich the first impurity region with the second impurity region. A control electrode layer is opposite to the second impurity region with an insulating film interposed. That portion of the second main surface which is opposite to the portion of the first main surface where the first impurity region is formed surrounds the regions for forming the fourth and fifth impurity regions of the second main surface, and it is a region of the first conductivity type or a region of the second conductivity type having impurity concentration not higher than that of the first impurity region.
摘要:
The semiconductor device according to one of the aspects of the present invention includes a semiconductor substrate of a first conductivity type, having upper and lower surfaces. A collector region of a second conductivity type is formed on the lower surface of the semiconductor substrate, and a collector electrode is formed on the collector region. Also, at least one pair of isolation regions of the second conductivity type are formed extending from the upper surface of the semiconductor substrate to the collector layer for defining a drift region of the first conductivity type, in conjunction with the collector region. A base region of the second conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the drift region, and an emitter region of the first conductivity type is formed adjacent the upper surface of the semiconductor substrate and within the base region. A gate electrode is formed opposing to the base region via an insulating layer. An emitter electrode is formed on the emitter region. The collector layer has thickness in the range between 17 μm to 50 μm.
摘要:
The present invention provides a method for detection of a basic peptide by mixing a sample suspected to contain the basic peptide and a reagent containing denatured albumin and detecting turbidness due to a complex of the basic peptide and denatured albumin.
摘要:
In a signal processing apparatus a synchronizer acquires synchronization with the spreading code of an intermediate frequency signal converted from a signal received from a satellite in a global positioning system. A demodulator then demodulates a message contained in the intermediate frequency signal. A measuring unit outputs a primary signal to a predetermined signal line, the primary signal expressing positioning results for the apparatus as measured on the basis of the demodulated message. A secondary signal output unit attaches a predetermined header to a secondary signal and outputs the result to the predetermined signal line, the secondary signal containing at least the intermediate frequency signal, or a signal generated from the intermediate frequency signal.
摘要:
A signal receiver including an input that receives a plurality of signals from a respective plurality of channels; a multiplexer unit that receives the plurality of signals from the input and that selects, in a time-division manner, one of the plurality of signals; and at least one phase difference detector that receives the selected signal from the multiplexer unit, a number of the at least one phase difference detectors being less than a number of the plurality of channels.