摘要:
Various methods are provided of forming capacitor electrodes for integrated circuit memory cells in which out-diffusion of dopant from doped silicon layers is controlled by deposition of barrier layers, such as layers of undoped silicon and/or oxide. In one aspect, a method of forming hemispherical grain silicon on a substrate is provided that includes forming a first doped silicon layer on the substrate and a first barrier layer on the doped silicon layer. A hemispherical grain polysilicon source layer is formed on the first barrier layer and a hemispherical grain silicon layer on the hemispherical grain polysilicon source layer. By controlling out-diffusion of dopant, HSG grain size, density and uniformity, as well as DRAM memory cell capacitance, may be enhanced, while at the same time maintaining reactor throughput.
摘要:
Embodiments include a computer system, method and program product for managing a software program installed on a computer hardware system, the software program subject to a software license. A retrieval of data is performed in which the data indicates actual usage of the software program and the computer hardware system, and processor power of the computer hardware system. In addition, a retrieval of licensing data from the software license is performed in which the licensing data indicates a permitted number of or fee for installations of the software program and a permitted amount of or fee for processor power of the computer hardware system in which the software program is installed. Whether to decommission a copy of the software program based on the data indicating actual usage, the licensing data, a projected amount of future usage of the software program, and criticality of the software program is determined and reported.
摘要:
A photolithographic system including a light filter that varies light intensity according to measured dimensional data that characterizes a lens error is disclosed. The light filter compensates for the lens error by reducing the light intensity of the image pattern as the lens error increases. In this manner, when the lens error causes focusing variations that result in enlarged portions of the image pattern, the light filter reduces the light intensity transmitted to the enlarged portions of the image pattern. This, in turn, reduces the rate in which regions of the photoresist layer beneath the enlarged portions of the image pattern are rendered soluble to a subsequent developer. As a result, after the photoresist layer is developed, linewidth variations that otherwise result from the lens error are reduced due to the light filter. Preferably, the light filter includes a light-absorbing film such as a semi-transparent layer such as calcium fluoride on a light-transmitting base such as a quartz plate, and the thickness of the light-absorbing film varies in accordance with the measured dimensional data to provide the desired variations in light intensity. The invention is particularly well-suited for patterning a photoresist layer that defines polysilicon gates of an integrated circuit device.
摘要:
A method of making NMOS and PMOS devices with reduced masking steps is disclosed. The method includes providing a semiconductor substrate with a first active region of first conductivity type and a second active region of second conductivity type, forming a gate material over the first and second active regions, forming a first masking layer over the gate material, etching the gate material using the first masking layer as an etch mask to form a first gate over the first active region and a second gate over the second active region, implanting a dopant of second conductivity type into the first and second active regions using the first masking layer as an implant mask, forming a second masking layer that covers the first active region and includes an opening above the second active region, and implanting a dopant of first conductivity type into the second active region using the first and second masking layers as an implant mask. Advantageously, the dopant of first conductivity type counterdopes the dopant of second conductivity type in the second active region, thereby providing source and drain regions of second conductivity type in the first active region and source and drain regions of first conductivity type in the second active region with a single masking step and without subjecting either gate to dopants of first and second conductivity type.
摘要:
An IGFET with a gate electrode and metal spacers in a trench is disclosed. The IGFET includes a trench with opposing sidewalls and a bottom surface in a semiconductor substrate, metal spacers adjacent to the sidewalls and the bottom surface, a gate insulator on the bottom surface between the metal spacers, protective insulators on the metal spacers, a gate electrode on the gate insulator and protective insulators, and a source and drain adjacent to the bottom surface. A method of forming the IGFET includes implanting a doped layer into the substrate, etching completely through the doped layer and partially through the substrate to form the trench and split the doped layer into source and drain regions, applying a high-temperature anneal to diffuse the source and drain regions beneath the bottom surface, depositing a blanket layer of conductive metal over the substrate and applying an anisotropic etch to form the metal spacers, depositing a continuous insulative layer over the substrate to provide the gate insulator and the protective insulators, depositing a blanket layer of gate electrode material over the substrate, and polishing the gate electrode material so that the gate electrode is substantially aligned with a top surface of the substrate. Advantageously, the channel length is significantly smaller than the trench length, and the metal spacers reduce the parasitic resistance of lightly doped source and drain regions.
摘要:
A method of making an IGFET with a multilevel gate that includes upper and lower gate levels is disclosed. The method includes providing a semiconductor substrate with an active region, forming a gate insulator on the active region, forming a first gate material with a thickness of at most 1000 angstroms on the gate inslator and over the active region, forming a first photoresist layer over the first gate material, irradiating the first photoresist layer with a first image pattern and removing irradiated portions of the first photoresist layer to provide openings above the active region, etching the first gate material through the openings in the first photoresist layer using the first photoresist layer as an etch mask for a portion of the first gate material that forms a lower gate level, removing the first photoresist layer, forming an upper gate level on the lower gate level after removing the first photoresist layer, and forming a source and drain in the active region. Advantageously, the first photoresist layer can be ultra-thin to enhance the accuracy in which the image pattern is replicated, thereby reducing variations in channel length and device performance.
摘要:
An IGFET with metal spacers is disclosed. The IGFET includes a gate electrode on a gate insulator on a semiconductor substrate. Sidewall insulators are adjacent to opposing vertical edges of the gate electrode, and metal spacers are formed on the substrate and adjacent to the sidewall insulators. The metal spacers are electrically isolated from the gate electrode but contact portions of the drain and the source. Preferably, the metal spacers are adjacent to edges of the gate insulator beneath the sidewall insulators. The metal spacers are formed by depositing a metal layer over the substrate then applying an anisotropic etch. In one embodiment, the metal spacers contact lightly and heavily doped drain and source regions, thereby increasing the conductivity between the heavily doped drain and source regions and the channel underlying the gate electrode. The metal spacers can also provide low resistance drain and source contacts.
摘要:
A method of forming a shallow junction in an IGFET is disclosed. The method includes forming a gate insulator on a semiconductor substrate of first conductivity type, forming a gate electrode on the gate insulator, forming a sidewall insulator on an edge of the gate electrode, forming a silicon-based spacer over the substrate such that the sidewall insulator separates and electrically isolates the spacer and the gate electrode, and diffusing a dopant of second conductivity type from the spacer into the substrate. The diffused dopant forms a shallow region of second conductivity type in the substrate, and a shallow junction is substantially laterally aligned with the edge of the gate electrode.
摘要:
The invention provides a method for manufacturing a non-volatile, virtual ground memory element. The method includes the steps of depositing a first polysilicon layer on gate oxide on a silicon substrate, depositing or growing a first oxide layer, depositing a barrier nitride layer and patterning the first polysilicon layer, the first oxide layer and the barrier nitride layer to form a floating gate. The method further includes the steps of doping a region of the silicon substrate adjacent the floating gate to form a bit line region and oxidizing the bit line region in a wet ambient. The method further includes the use of a spacer nitride or spacer oxide/nitride layer to protect the edge of the floating gate during oxidation and to reduce dopant diffusion under the gate. The method further includes the steps of stripping the barrier nitride layer, depositing a second polysilicon layer and patterning the second polysilicon layer to form a control gate.
摘要:
The new creation and use of entitlement constraint templates methods and systems can be linked to software offerings in a software catalog. Allowing software catalog experts to link contractual entitlement data with software product offerings via constraint templates on such a varying list of constraint types, establishes a highly robust software catalog knowledge base. The result is significant cost savings in terms of time spent inputting entitlement constraint data by contract analysts as well as minimizing errors by those analysts who would otherwise be required to have a very high level of expertise in the software offerings while potentially inputting the same constraint data repeated times.