摘要:
A method and apparatus are disclosed to reduce the amount of unstripped hydrocarbon flowing to the regenerator in a riser reactor FCC unit. The catalyst stripper section is heated by indirect heat exchange with a mixture of hot regenerator flue gas and regenerated catalyst. In the preferred embodiment, the regenerator is operated under partial combustion conditions and the resulting carbon monoxide-containing flue gas is burned in a catalyst stripper heat exchanger.
摘要:
A process for demetallizing metals contaminated FCC catalyst in an FCC regenerator. A metals getter additive, with higher settling velocity, is added to the regenerator, to remove metals from FCC catalyst by solid-solid interaction. The FCC catalyst forms a light, discrete, dense phase fluidized bed on top of a fluidized bed of additive. FCC catalyst is recycled to the cracking reactor from the top fluidized bed, while additive can be withdrawn from the lower fluidized bed for disposal or for metals recovery and recycle. Additive can be optimized for metals removal and will not dilute the cracking catalyst in the FCC reactor.
摘要:
A process is disclosed for upgrading reformate and/or light FCC gasoline by substantially reducing the amount of benzene in the gasoline product while simultaneously reducing the gasoline ASTM distillation End Point. The process comprises the fractionation of reformate to recover that fraction, C.sub.7 -C.sub.8 hydrocarbons, directly useful in gasoline without further conversion. A heavy bottom fraction comprising C.sub.9 + aromatic and non-aromatic hydrocarbons is recovered and a C.sub.6 fraction rich in benzene. The total C.sub.6 fraction and a portion of the C.sub.9 + fraction are converted by alkylation, transalkylation and cracking in contact with acidic metallosilicate catalyst particles to gasoline boiling range materials rich in alkylaromatics. Following debutanization or depentanization of the conversion product, the fraction containing unconverted benzene is recycled to the reformate fractionator.
摘要:
Oxides of nitrogen (NO.sub.x) emissions from an FCC regenerator are reduced by operating the regenerator in partial CO burn mode to produce flue gas with more CO than O.sub.2 and with NO.sub.x precursors. This flue gas is then enriched with controlled amounts of oxygen and charged over catalyst, preferably Group VIII noble metal on a support, to convert most NO.sub.x precursors to nitrogen. Flue gas may then be charged to a CO boiler. Eliminating more than 90% of NO.sub.x emissions is possible by operating the FCC regenerator in partial CO burn mode, then adding air and catalytically converting NO.sub.x precursors at substoichiometric conditions. Conversion of NO.sub.x, if formed in the regenerator, may be achieved as well.
摘要:
Oxides of nitrogen (NO.sub.x) emissions from FCC regenerators in complete CO combustion mode are reduced by degrading regenerator performance to increase the coke on regenerated catalyst. High zeolite content cracking catalyst, regenerated to contain more coke, gives efficient conversion of feed and reduces NO.sub.x emissions from the regenerator. Operating with less catalyst, e.g., 30-60% of the normal amount of catalyst in the bubbling dense bed, can eliminate most NO.sub.x emissions while increasing slightly plant capacity and reducing catalyst deactivation.
摘要:
A process for fluidized catalytic cracking of heavy feed using a low H.sub.2 S content lift gas in the base of a riser reactor. The lift gas is a recycled, ethylene rich stream obtained by removing H.sub.2 S from a compressed vapor stream intermediate the FCC main column receiver and the gas plant associated with the FCC unit. The low H.sub.2 S lift gas does not increase SO.sub.x emissions from the regenerator as much as a recycled vapor from the FCC main column. As the lift gas is not purified in the gas plant it does not overload it.
摘要:
A low sulfur gasoline of relatively high octane number is produced from a catalytically cracked, sulfur-containing naphtha by hydrodesulfurization followed by octane enhancing treatment in a fluidized bed catalytic process, in the presence of an aromatics-rich feedstream. The process converts the hydrodesulfurized intermediate and the aromatics-rich feedstream to a gasoline boiling range fraction of high octane number. The fluidized bed catalytic process is carried out over zeolite catalyst particles in a turbulent reactor bed at a temperature of about 600.degree. to 800.degree. F. (316.degree. to 427.degree. C.) and pressure of about 100 to 250 psig (790 to 825 kPa. The catalyst has an apparent particle density of about 0.9 to 1.6 g/cm.sup.3 and a size range of about 1 to 150 microns, and average catalyst particle size of about 20 to 100 microns containing about 10 to 25 weight percent of fine particles having a particle size less than 32 microns. The feed vapor is passed upwardly through the fluidized catalyst bed under turbulent flow conditions; turbulent fluidized bed conditions are maintained through the reactor bed between transition velocity and transport velocity at a superficial fluid velocity of about 0.3 to 2 meters per second. Treatment in the fluidized bed catalytic process restores the octane loss which takes place as a result of the hydrogenative treatment and results in a low sulfur gasoline product with an octane number comparable to that of the feed naphtha.
摘要翻译:通过加氢脱硫,然后在富含芳烃的进料流存在下,在流化床催化方法中进行辛烷值增强处理,由催化裂解的含硫石脑油产生相对高辛烷值的低硫汽油。 该方法将加氢脱硫中间体和富含芳烃的进料流转化为高辛烷值的汽油沸程。 流化床催化过程在湍流反应器床中在沸点催化剂颗粒上进行,温度为约600至800°F(316至427℃),压力为约100至250psig(790至825 催化剂具有约0.9至1.6g / cm 3的表观颗粒密度和约1至150微米的尺寸范围,并且约20至100微米的平均催化剂颗粒尺寸含有约10至25重量%的具有 进料蒸气在湍流条件下向上通过流化催化剂床;湍流流化床条件通过反应器床保持在过渡速度和输送速度之间,表面流体速度约为0.3至2 流化床催化过程中的处理恢复了由于氢化处理而发生的辛烷值损失,导致低硫汽油产物与 辛烷值与进料石脑油相当。
摘要:
A process for multi-stage catalytic cracking is disclosed. A first stage cracks a first feed at atmospheric to 100 psig over a shape selective zeolite to convert from 10 to 90%, by volume, to lighter products rich in iso-compounds which may be used to make ethers. A second feed, which may include 700.degree. F.+ liquid from the selective cracking reaction, is cracked in a catalytic cracking (FCC) unit. Preferably all or some of the products from the shape selective cracking reactor are fractionated in the FCC main column.
摘要:
A multistage catalytic reactor system for preparing ethers such as methyl t-butyl (MTBE) and t-amyl methyl ether (TAME) from iso-olefin and methanol, comprising a first reactor for contacting the iso-olefin and alcohol with a solid regenerable catalyst, such as medium-pore zeolite conversion catalyst for partial conversion of the iso-olefin and methanol to an unsymmetrical ether, operatively connected for feeding effluent from the first reactor to a second etherification reaction zone containing sensitive catalyst, such as macroreticular polystyrenesulfonic acid resin. In a preferred embodiment, the second reaction zone comprises an inlet means for receiving withdrawn intermediate product, a catalytic distillation column containing solid acid resin etherification catalyst in a plurality of fixed bed catalysis-distillation zones, and outlet means for withdrawing a final etherification product.
摘要:
A technique for converting olefinic light hydrocarbons rich in butenes and butanes to ether-rich liquid fuels including etherification and transhydrogenation operations. The preferred process includes: reacting a mixed C4 hydrocarbon stream containing isobutene and n-butenes with lower aliphatic alcohol in an etherification zone in contact with an acidic etherification catalyst under etherification conditions whereby an effluent stream containing C5+ tertiary-alkyl ether is produced; separating the etherification effluent stream to provide a liquid stream comprising C5+ ether and an olefinic stream comprising unreacted C4 hydrocarbons; contacting at least the n-butenes from the C.sub.4 olefinic hydrocarbon stream with isobutane under transhydrogenation conditions in the presence of transhydrogenation catalyst whereby isobutane is converted to isobutene; separating transhydrogenation effluent to recover a C4 olefinic intermediate stream containing isobutene; and passing at least a portion of the isobutene-containing intermediate stream to the etherification zone for conversion to tertiary-alkyl ether.