Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to inspect and perform lithography on a substrate using a combination of vectoring to move a beam to features to be imaged, and raster scanning to obtain an image of the feature(s). The inventors have discovered that it is highly advantageous to use an extra step, a fast raster scan to image the substrate at a lower resolution, to determine which features receive priority for inspection; this extra step can reduce total inspection time, enhance inspection results, and improve beam alignment and manufacturing yield. Using multiple beam-producing columns, with multiple control computers local to the columns, provides various synergies. Preferably, miniature, non-magnetic, electrostatically-driven columns are used.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use write and inspection tools that share the same or substantially the same stage and the same or substantially the same designs for respective arrays of multiple charged particle beam columns, and that access the same design layout database to target and pattern or inspect features. By using design-matched charged particle beam tools, correlation of defectivity is preserved between inspection imaging and the design layout database. As a result, image-based defect identification and maskless design correction, of random and systematic errors, can be performed directly in the design layout database, enabling a fast yield ramp.