Abstract:
A thermosetting resin composition contains a primary resin formed from mixing a styrene-type polyphenylene ether resin thermally modified with styrene with an acrylic-type polyphenylene ether resin thermally modified with acrylic at a weight ratio ranging between 0.5 and 1.5, consequently having excellent heat resistance, flowability, and filling ability; and when cured, having a dielectric constant smaller than 3.0 and a dielectric dissipation factor smaller less than 0.0020 at the frequency of 1 GHz as well as a glass transition temperature higher than 210° C.; in application, the composition is suitable to impregnate reinforcement to form prepregs with excellent cutability.
Abstract:
A thermosetting resin composition comprises a thermosetting polybutadiene resin, a thermosetting polyphenylene ether resin that is ended with styrene and acrylate in a weight ratio of 0.5-1.5 as reactive functional groups, a thermoplastic resin that serves to set desired heat resistance, flowability and filling performance, a compound cross-linking initiator composed of peroxides of different half-life temperatures to effectively improve its crosslink density during its thermal curing process; particularly the composition after cured has a low dielectric constant, a low dielectric dissipation factor, a high Tg, and high rigidity, and the prepreg made thereof is easy to cut.
Abstract:
A fluorocarbon resin composition is applicable to produce a prepreg for use in making a high-frequency circuit board, including a polytetrafluoroethylene resin; a fluorine-containing copolymer of poly fluoroalkoxy or fluorinated ethylene propylene; inorganic powders and an impregnation additive such as hydroxyethyl cellulos; resulted in that the prepreg is capable of increasing a plurality of times for proceeding impregnation-coating, the surface defects prone to occur on a fluorocarbon prepreg during drying, baking and sintering after impregnation are therefore improved at the same time.
Abstract:
A thermosetting resin composition due to containing a modified PPE resin as a main ingredient is suited for use in making a pregreg or a copper foil substrate, when hardened, featuring a small dielectric constant (Dk), a low dielectric dissipation factor (Df) and a high Tg as well as a high resistance to heat and flame, this outstanding result is because the modified PPE resin is formed with a novel two-dimensional hardenable structure prepared to have side-chain reactive functional groups being provided in addition to those at the terminal ends of the main chain of the PPE resin thereof.