Abstract:
Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
Abstract:
Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
Abstract:
Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
Abstract:
Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
Abstract:
Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
Abstract:
Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
Abstract:
Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
Abstract:
Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
Abstract:
Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
Abstract:
Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.