Abstract:
A wafer cleaner and a method therefor that efficiently cleans a wafer with a little amount of a cleaning liquid and efficiently performs a heating wet cleaning processing. The present invention includes a stage where a wafer is placed, a rotary driving unit that rotates the stage in a circumferential direction, a liquid discharge nozzle disposed facing the wafer placed on the stage and supplies a cleaning liquid on the wafer placed on the stage, and a control unit that causes the liquid discharge nozzle to supply a space between the wafer placed on the stage and the liquid discharge nozzle with a predetermined amount of the cleaning liquid to fill the space. The present invention also includes a lamp disposed on a position facing the wafer placed on the stage to heat at least an interface portion of the wafer and a cleaning liquid.
Abstract:
To provide a crystal orientation mark which can be formed easily and inexpensively, and which enables to perform high precision alignment and allows information other than crystal orientation to be included, even for a small diameter process substrate. A crystal orientation mark is drawn on the surface of the process substrate. The crystal orientation mark includes a marking region for crystal orientation detection, and a marking region for information. The marking region for crystal orientation detection is provided at two locations in an outer edge portion of the process substrate to be used for the alignment of the process substrate. The marking region for information is provided on a straight-line region connecting the marking regions for crystal orientation detection at the two locations, and includes a pattern for demonstrating predetermined information relating to the process substrate.
Abstract:
The wafer polishing apparatus comprises a polishing plate, a polishing head capable of holding a wafer, and a slurry supplying section. The polishing plate includes: a plurality of concentric polishing zones, each of which has a prescribed width for polishing the wafer and on each of which a polishing cloth is adhered; and a groove for discharging slurry being formed between the polishing zones. A head cleaning section, which cleans the polishing head, or a wafer cleaning section, which cleans the polished wafer, is provided to a center part of the polishing plate and located on the inner side of the innermost polishing zone.
Abstract:
A method of manufacturing semiconductor wafers is provided which facilitates formation of orientation flat lines and allows beveling work without problems.The method of manufacturing semiconductor wafers according to the present invention is a method of manufacturing semiconductor wafers, in which a plurality of small-diameter wafers is cut out from a large-diameter semiconductor wafer, the method including: a marking step of forming straight groove-like orientation flat lines by a laser beam so as to cross the respective small-diameter wafers in each row in the large-diameter semiconductor wafer, wherein cutout positions of the small-diameter wafers are aligned in rows in a specific direction, collectively for each of the rows; and a cutting step of cutting out the small-diameter wafers separately from the large-diameter semiconductor wafer by a laser beam after the marking step.