Abstract:
A method includes receiving at a first base station rate information dependent on communication between a user equipment and another base station and using said rate information to schedule communications between said first base station and said user equipment.
Abstract:
An apparatus comprising at least one processing circuitry, and at least one memory for storing instructions to be executed by the processing circuitry, wherein the at least one memory and the instructions are configured to, with the at least one processing circuitry, cause the apparatus at least: to prepare configuration information regarding cell reselection in a communication network for at least one communication element capable of communicating in a multi-connectivity communication mode, wherein the configuration information comprises at least one preservation scope indication related to at least one cell reselection priority indication which indicates that priority is to be assigned to a first type of cells of the communication network for cell reselection, compared to other types of cells of the communication network, wherein the at least one preservation scope indication indicates at least one cell across which the at least one cell reselection priority indication is to be maintained, and to provide the configuration information for configuring the at least one communication element capable of communicating in the multi-connectivity communication mode.
Abstract:
There are provided measures for improvement of coverage hole analysis. Such measures exemplarily include detecting a radio link failure, producing a failure report including information indicative of a radio condition during a time period between said radio link failure and a successful establishment of a radio link, detecting said successful establishment of said radio link, and transmitting, after detection of said successful establishment of said radio link, said failure report.
Abstract:
The present invention provides apparatuses, methods, computer programs, computer program products and computer-readable media regarding dormant cell RRM (Radio Resource Management) measurement reporting. Certain aspects of the present invention include configuring, at a base station, a measurment configuration message for causing user equipment served by the base station to perform and report measurements on cells, the measurement configuration message comprising information indicating criteria impacting a measurement reporting procedure with respect to the cells, the said criteria being related to at least one of the state of a cell, a type of a cell, and a type of a signal used for the measurements of the cells, and transmitting said configured measurement configuration message to the user equipment.
Abstract:
Disclosed is a method comprising providing a primary cell capable of serving a terminal device; determining a candidate secondary cell group, comprising one or more cells that have coverage area within the coverage are of the primary cell; determining, from the candidate secondary cell group, a cell that, based on information obtained before or during a connection setup signalling, has the highest probability of being successfully configured as a secondary cell for an inter-site carrier aggregation for the terminal device; and configuring the cell as the secondary cell for the inter-site carrier aggregation.
Abstract:
A method may include receiving a request for conditional handover from a source node. The method may also include sending a conditional handover request acknowledgment message in response to the request. The method may further include sending a conditional handover cancellation message to a source node. The conditional cancellation message may include a genuine cancellation or a modification-related cancellation. Further, the method may include receiving a response message from the source node in response to the conditional handover cancellation message. In addition, the method may include deciding to keep or release user equipment context based on the response message.
Abstract:
For a UE in idle mode and camped on a current cell, in response to receiving a paging message indicating the UE should perform a process to select a cell for camping on for idle mode, the following are performed: performing the process to select one of a plurality of cells for camping on for idle mode; and performing operations to camp on the selected cell. The following are performed as part of a continuous load-balancing process for idle-mode load balancing for a cell: determining whether the cell is congested for UEs camping on the cell while in idle mode; and in response to a determination the cell is congested, sending a paging message to idle-mode UE(s) camped on the cell, wherein the paging message is configured to cause the idle-mode UE(s) to start a process to select a cell for camping on for idle mode.
Abstract:
An apparatus comprising at least one processing circuitry, and at least one memory for storing instructions to be executed by the processing circuitry, wherein the at least one memory and the instructions are configured to, with the at least one processing circuitry, cause the apparatus at least: to prepare configuration information regarding cell reselection in a communication network for at least one communication element capable of communicating in a multi-connectivity communication mode, wherein the configuration information comprises at least one preservation scope indication related to at least one cell reselection priority indication which indicates that priority is to be assigned to a first type of cells of the communication network for cell reselection, compared to other types of cells of the communication network, wherein the at least one preservation scope indication indicates at least one cell across which the at least one cell reselection priority indication is to be maintained, and to provide the configuration information for configuring the at least one communication element capable of communicating in the multi-connectivity communication mode.
Abstract:
There are provided measures for reduction of in-device co-existence interference. Such measures exemplarily comprise (in a mobile network scenario allowing co-operation of a first radio access technology with a second radio access technology) detecting a need to avoid an in-device co-existence interference in relation to said co-operation, and performing at least one action for avoiding the in-device co-existence interference.
Abstract:
A method and apparatus may be configured to receive at least one set of barring parameters from a network entity. Each set corresponds to a barring check and has a unique implicit or explicit priority. Each set of received barring parameters also corresponds to at least one application that is allowed to bypass the barring check associated with the corresponding and lower priority sets of barring parameters. An application belonging to one of the application groups corresponding to a set of barring parameters needs to pass all the barring checks according to the higher priority barring parameters to access the network. The method can also include determining whether an application bypasses the barring check associated with the corresponding and lower priority sets of barring parameters.