Abstract:
Apparatus for flattening a warped ball grid array (BGA) package, including a first plate having a first surface and opposite second surface and a second plate having a first surface and opposite second surface. The first surface of the first plate and the first surface of the second plate oppose each other with a gap there-between. The gap houses the warped BGA package there-in, the warped BGA package including a package substrate with solder balls attached to a device mounting surface of the package substrate to form a BGA thereon. The gap adjustable by changing the position of the first plate or of the second plate such that a pushing force is applicable to the warped BGA package. A method of manufacturing a flattened BGA package and computer having a circuit that include the flatted BGA package are also disclosed.
Abstract:
Apparatus for flattening a warped ball grid array (BGA) package, including a first plate having a first surface and opposite second surface and a second plate having a first surface and opposite second surface. The first surface of the first plate and the first surface of the second plate oppose each other with a gap there-between. The gap houses the warped BGA package there-in, the warped BGA package including a package substrate with solder balls attached to a device mounting surface of the package substrate to form a BGA thereon. The gap adjustable by changing the position of the first plate or of the second plate such that a pushing force is applicable to the warped BGA package. A method of manufacturing a flattened BGA package and computer having a circuit that include the flatted BGA package are also disclosed.
Abstract:
A secure electronic component assembly is described herein for ensuring the physical integrity of an integrated circuit (IC). The secure electronic component assembly may comprise a printed circuit board (PCB), an integrated circuit (IC) mounted on the PCB, and a security chip that is operatively coupled to the IC. The IC may comprise a plurality of solder balls operatively coupled thereto and configured for physical and electrical connection between the IC and the PCB. The security chip is configured to detect a potential tampering of the IC.
Abstract:
An apparatus for determining an electrical reliability of a ball grid array (BGA) assembly of an integrated circuit is presented. The assembly comprises a testing printed circuit board (PCB) having an integrated circuit (IC) test region located thereon. Vias extend through the testing PCB from a surface to an underside thereof within the IC test region. Each via has an IO pad or ground pad electrically connectable thereto. An IC package having an IC die connected thereto by solder bumps is connected to the IC test region by solder balls, such that each of the IO pads is electrically connectable to a respective pair of the solder balls and solder bumps by the vias. A method of testing interconnection reliability of the BGA using the apparatus is also presented.
Abstract:
An apparatus for determining an electrical reliability of a ball grid array (BGA) assembly of an integrated circuit is presented. The assembly comprises a testing printed circuit board (PCB) having an integrated circuit (IC) test region located thereon. Vias extend through the testing PCB from a surface to an underside thereof within the IC test region. Each via has an IO pad or ground pad electrically connectable thereto. An IC package having an IC die connected thereto by solder bumps is connected to the IC test region by solder balls, such that each of the IO pads is electrically connectable to a respective pair of the solder balls and solder bumps by the vias. A method of testing interconnection reliability of the BGA using the apparatus is also presented.
Abstract:
A secure electronic component assembly is described herein for ensuring the physical integrity of an integrated circuit (IC). The secure electronic component assembly may comprise a printed circuit board (PCB), an integrated circuit (IC) mounted on the PCB, and an underfill material disposed between the IC and the PCB. The underfill material comprises a detection agent that is configured to change a state of the IC in response to exposure to an external environment, wherein the change in the state of the IC is indicative of a tamper condition.