摘要:
An invention is disclosed for conducting a remote presentation session with a client that uses a web browser to conduct the session. In embodiments, a proxy server exists between the remote presentation server and the client. The proxy server establishes a HTTP session with the client and a remote presentation session with the client. The server generates graphics encoded with a remote presentation protocol and sends them to the proxy, which re-encodes them as video and sends them to the client for display in the web browser. The client captures user input at the web browser and sends it to the proxy, which encodes it with the remote presentation protocol and sends it to the server to be processed.
摘要:
An invention is disclosed for conducting a remote presentation session with a client that uses a web browser to conduct the session. In embodiments, a proxy server exists between the remote presentation server and the client. The proxy server establishes a HTTP session with the client and a remote presentation session with the client. The server generates graphics encoded with a remote presentation protocol and sends them to the proxy, which re-encodes them as video and sends them to the client for display in the web browser. The client captures user input at the web browser and sends it to the proxy, which encodes it with the remote presentation protocol and sends it to the server to be processed.
摘要:
An invention is disclosed for encoding and decoding data in a 4:4:4 subsampling scheme, using an encoder/decoder that is not configured to encode or decode data in 4:4:4. In embodiments, an encoder planararizes an input frame into three component frames in a 4:0:0 scheme. The encoder then encodes each component frame in the 4:0:0 scheme, and aggregates the encoded component frames into a bit stream. A decoder receives such a bit stream, and decodes it with a component not configured to decode data in 4:4:4. The decoder decodes the bit stream to produce a representation of the three component frames in 4:0:0, then aggregates the three component frames into a representation of the original frame in 4:4:4.
摘要:
An invention is disclosed for encoding and decoding data in a 4:4:4 subsampling scheme, using an encoder/decoder that is not configured to encode or decode data in 4:4:4. In embodiments, an encoder planararizes an input frame into three component frames in a 4:0:0 scheme. The encoder then encodes each component frame in the 4:0:0 scheme, and aggregates the encoded component frames into a bit stream. A decoder receives such a bit stream, and decodes it with a component not configured to decode data in 4:4:4. The decoder decodes the bit stream to produce a representation of the three component frames in 4:0:0, then aggregates the three component frames into a representation of the original frame in 4:4:4.
摘要:
Exemplary techniques for performing motion compensation in the discrete wavelet transform domain are described. In an exemplary embodiment, a server can perform motion compensation in the discrete wavelet transform domain for an image and send at least one motion vector and at least one delta array to a client. The client can use the at least one motion vector and the at least one delta array to compose the image. In addition to the foregoing, other aspects are described in the detailed description, claims, and figures.
摘要:
A system and method for effectively performing an adaptive quantization procedure includes an energy calculator that initially determines energy values for subbands of input data. A quantizer receives initial quantization parameters that each correspond to a different respective one of the subbands. The quantizer calculates adaptive quantization parameters from the initial quantization parameters by utilizing corresponding ones of the energy values. The quantizer then utilizes the adaptive quantization parameters to generate quantized coefficients for the subbands during the adaptive quantization procedure.
摘要:
A system and method for effectively encoding and decoding electronic information includes an encoding system with a tiling module that initially divides source image data into data tiles. A frame differencing module then outputs only altered data tiles to various processing modules that convert the altered data tiles into corresponding tile components. A quantizer performs a compression procedure upon the tile components to generate compressed data according to an adjustable quantization parameter. An adaptive entropy selector then selects one of a plurality of available entropy encoders to most effectively perform an entropy encoding procedure to thereby produce encoded data. The entropy encoder may also utilize a feedback loop to adjust the quantization parameter in light of current transmission bandwidth characteristics.
摘要:
A system and method for effectively encoding and decoding electronic information includes an encoding system with a tiling module that initially divides source image data into data tiles. A frame differencing module then outputs only altered data tiles to various processing modules that convert the altered data tiles into corresponding tile components. A quantizer performs a compression procedure upon the tile components to generate compressed data according to an adjustable quantization parameter. An adaptive entropy selector then selects one of a plurality of available entropy encoders to most effectively perform an entropy encoding procedure to thereby produce encoded data. The entropy encoder may also utilize a feedback loop to adjust the quantization parameter in light of current transmission bandwidth characteristics.
摘要:
In various embodiments, a screen image may be divided into rectangles, and a capture component may track changed rectangles and capture the screen upon receiving an indication. For small screen updates, the capture rate may be set to ˜30 captures per second to provide a lower latency. As the screen update size increases, the capture rate may be decreased to match an allocated bandwidth. The capture rate may be increased when available bandwidth increases and decreased as bandwidth decreases. For example, the capture rate may be decreased when downstream back pressure meets predefined criteria. The capture rate change may be effected gradually to avoid jerks and jumps. Varying the capture rate by also enable audio/video synchronization with varying bandwidth variations. Some embodiments may be extended to multiple monitor solutions.
摘要:
In various embodiments, a screen image may be divided into rectangles, and a capture component may track changed rectangles and capture the screen upon receiving an indication. For small screen updates, the capture rate may be set to ˜30 captures per second to provide a lower latency. As the screen update size increases, the capture rate may be decreased to match an allocated bandwidth. The capture rate may be increased when available bandwidth increases and decreased as bandwidth decreases. For example, the capture rate may be decreased when downstream back pressure meets predefined criteria. The capture rate change may be effected gradually to avoid jerks and jumps. Varying the capture rate by also enable audio/video synchronization with varying bandwidth variations. Some embodiments may be extended to multiple monitor solutions.