Abstract:
A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with the structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with nanometer-scale structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
Sensors mounted on a textile include at least one of electrically conductive textile electrodes; single or multiple optically coupled infrared and red emitter and photodiode or photo transistor; and thin film or Resistive Temperature Detector (RTD). Textile electrodes, electrical connections, and electrical functionalization use at least one of nanoparticles, nanostructures, and mesostructures. Conductive thread, for electrical connections, may include a fiber core made from conductive materials such as but not limited to metals, alloys, and graphine structures, and a sheath of insulating materials such as but not limited to nylon, polyester, and cotton.
Abstract:
A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with nanometer-scale structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.
Abstract:
A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.
Abstract:
A process for the large scale manufacturing of vertically standing hybrid nanometer-scale structures of different geometries, including fractal architecture made of flexible materials, on a flexible substrate including textiles is disclosed. The nanometer-scale structures increase the surface area of the substrate. The nanometer-scale structures may be coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to temperature, humidity, pressure, atmospheric pressure, electromagnetic signals originating from biological or non-biological sources, volatile gases, and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the nanometer-scale structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with nanometer-scale structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
A process for the large-scale manufacturing vertically standing hybrid nanometer scale structures of different geometries including fractal architecture of nanostructure within a nano/micro structures made of flexible materials, on a flexible substrate including textiles is disclosed. The structures increase the surface area of the substrate. The structures maybe coated with materials that are sensitive to various physical parameters or chemicals such as but not limited to humidity, pressure, atmospheric pressure, and electromagnetic signals originating from biological or non-biological sources, volatile gases and pH. The increased surface area achieved through the disclosed process is intended to improve the sensitivity of the sensors formed by coating of the structure and substrate with a material which can be used to sense physical parameters and chemicals as listed previously. An embodiment with the structures on a textile substrate coated with a conductive, malleable and bio-compatible sensing material for use as a biopotential measurement electrode is provided.
Abstract:
Sensors mounted on a textile include at least one of electrically conductive textile electrodes; single or multiple optically coupled infrared and red emitter and photodiode or photo transistor; and thin film or Resistive Temperature Detector (RTD). Textile electrodes, electrical connections, and electrical functionalization use at least one of nanoparticles, nanostructures, and mesostructures. Conductive thread, for electrical connections, may include a fiber core made from conductive materials such as but not limited to metals, alloys, and graphine structures, and a sheath of insulating materials such as but not limited to nylon, polyester, and cotton.
Abstract:
A roll-to-roll printing process for large scale manufacturing of nanosensor systems for sensing pathophysiological signals is disclosed. The roll-to-roll manufacturing process may include three processes to improve the throughput and to reduce the cost in manufacturing: fabrication of textile based nanosensors, printing conductive tracks, and integration of electronics. The wireless nanosensor systems can be used in different monitoring applications. The fabric sheet printed and integrated with the customized components can be used in a variety of different applications. The electronics in the nanosensor systems connect to remote severs through adhoc networks or cloud networks with standard communication protocols or non-standard customized protocols for remote health monitoring.