摘要:
The invention provides a gas diffusion electrode containing a fiber reinforced composite structure in a layer thereof, the structure comprising structurally intact fibers precoated with sinterable polymeric material, which material is heat sintered, whereby the fibers are bonded to each other and to other components of the structure by the sintered polymeric material, while maintaining their individual fibrous structure and strength.
摘要:
The invention provides a single pass wet fabrication process for preparing a gas diffusion electrode for metal-air batteries and fuel cells comprising:a) preparing an active-layer forming dispersion containing catalyzed carbon black, hydrophilic fluorinated polymer and particulate hydrophobic fluorinated polymer in a liquid medium;b) preparing a blocking-layer forming dispersion containing carbon black and particulate hydrophobic polymeric binders in a liquid medium;c) filtering a first of the layer forming dispersions though filtering means to deposit a first layer of damp solids mass;d) filtering a second of the layer forming dispersions through the first deposited damp solids mass before the drying or sintering of the first deposited damp solids mass in order to deposit a second layer of damp solids mass thereon in such a manner that lower components of the second layer of damp solids mass are intermixed with upper components of the first layer of deposited damp solids mass;e) drying and compressing the composite first and second layers with a conductive metal mesh incorporated therein; andf) heating the dried layers to a temperature above the sintering temperature of the hydrophobic polymer while applying pressure thereto thereby causing the polymeric materials of both layers to sinter and bond with each other and with other components of the layers.
摘要:
The invention provides a process for preparing a gas-diffusion electrode for metal-air batteries and fuel cells of the type having a blocking layer formed from a precursor containing carbon black and particulate hydrophobic polymeric binders, comprising heating the carbon black at a temperature of about 400.degree.-1,200.degree. C. for a period of about 1-10 hours in a reducing environment, prior to the formation of the precursor, whereby hydrophilic centers in the pre-treated carbon black are minimized without increasing its corrosivity/surface area and thereby increasing the stability in concentrated KOH at high-cell operating temperatures of a blocking layer formed from the pre-treated carbon black.
摘要:
A method for maximizing the effective life and utilization of CO.sub.2 -absorbent material in a scrubber system for removing carbon dioxide from an air inflow to a metal-air battery or fuel cell comprises providing, in such a battery, a housing including a gas inlet, a gas outlet, and at least one removable, gas-permeable container containing a CO.sub.2 -absorbent material, the container being positioned across the flow path of gas entering said inlet and exiting said outlet. After a predetermined utilization of the system, the at least one removable, gas-permeable container is removed therefrom and spent CO.sub.2 -absorbent material from the container is regenerated for reuse in the scrubber system, the regeneration including at least periodically removing accumulated Group 1a metal carbonate deposits.
摘要:
A mechanically rechargeable, electrochemical metal-air battery of the type having a plurality of metal-air cells, each of said cells comprising (a) a housing having a base, two major surfaces and two minor surfaces, defining an interior space for containing therein a replaceable metal electrode having an electrically conductive skeletal member encompassed by an active metal component, the interior space communicating with an opening opposite the base through which the replaceable metal electrode is selectively removed to enable the mechanical replacement thereof with a freshly charged metal electrode; (b) at least one generally planar, air permeable but liquid impermeable, air electrode, each of the electrodes being installed in a window-like opening provided in at least one of the major surfaces; and (c) an electrolyte in contact with the metal and air electrodes; the improvement comprising a first woven mesh separator attached to an inner, electrolyte-facing surface of each of the air electrodes and a second, woven mesh separator attached to and covering a major surface of the replaceable metal electrode facing each of the air electrodes, the first and second woven mesh separators being in sliding relationship to each other.
摘要:
A method of producing a mercury-free corrosion resistant dendritic zinc alloy powder is provided. According to the method an electrolytic cell is prepared that contains an aqueous alkaline electrolyte with a preselected concentration of dissolved zinc cations and optionally the cations of one or more soluble inhibitor metals. The cell also contains a non-zinc adherent cathode, a first anode, and a second anode. The second anode comprises an inhibitor metal, the salts of which are only sparingly soluble in the alkaline electrolyte. For example, the second anode may comprise a minor anode of indium or bismuth interposed between the first or major anode and the cathode. A first voltage between the first anode and cathode is then applied to establish a desired cathode current density and the deposition of dendritic zinc and optional soluble inhibitor metals on the cathode. Concurrently a second voltage between the second anode and cathode is applied to establish a desired current density at the second anode and the simultaneous co-deposition of a desired concentration of the first inhibitor metal in the dendritic zinc being deposited on the cathode. Intermittently the deposited zinc alloy is removed from the cathode and homogenized into a plurality of dendritic zinc alloy particles. According to the method, mercury-free electrolytic zinc alloy powders with effective corrosion inhibiting concentrations of indium and/or bismuth either alone or in combination with other inhibitor metals can be produced. The corrosion resistant zinc alloy powders have a dendritic morphology that is advantageous for battery applications.
摘要:
An electrochemically prepared, high-performance, zinc powder has an apparent density of about 0.2-2 g/cc and a surface area of about 0.5-6 m.sup.2 /gm and further has at least one corrosion inhibitor metal intrinsically alloyed therein.
摘要:
A process for the preparation of an alkaline-zinc slurry for use in batteries, the slurry comprising an admixture of (a) at least partly oxidized zinc; (b) an aqueous solution of at least one Group Ia metal; and (c) an inorganic or organic inhibitor. The process includes the steps of electrolyzing the admixture in a cell with a corrosion-resistant anode and a non-zinc-adherent cathode such that the zinc deposits on the cathode self-detach or are removed until no more than a preselected amount of zinc remains in the solution, provided that the current density at the cathode is preselected so that the electrowon zinc will have, after homogenizing into particles, a density within the range 0.2-2.0 g/cc and a surface area within the range 0.5-6.0 m.sup.2 /g; removing zinc from the cathode and homogenizing it into particles; and combining the homogenized zinc particles with additional aqueous Group Ia metal hydroxide and optionally with other makeup components selected from the group consisting of water and inhibitor to form a charged slurry.
摘要:
A photovoltaic cell for converting a light source into electricity, including: (a) a housing for the photovoltaic cell, including: (i) an at least partially transparent cell wall; (b) at least one electrically-conductive element, disposed at least partially within the photovoltaic cell, for boosting collection of a current generated by the cell; (c) a conductive coating, electrically associated with the electrically-conductive element, and disposed on a surface within the photovoltaic cell; (d) an electrolyte, disposed within the cell wall, the electrolyte containing a redox species, and (e) a current collection element, disposed on a side of the cell wall, wherein the current collection element is electrically connected to the electrically-conductive element, so as to remove the current produced by the cell.
摘要:
The invention provides a process for removing discharged active zinc-containing material from a mechanically rechargeable zinc battery anode, containing the same, the anode being of the type comprising a skeletal frame, including conductive metal and having a portion of a surface area thereof formed as open spaces, and an active zinc anode component compacted into a rigid static bed of active anode material encompassing the skeletal frame, and having two opposite major surfaces, the process comprising introducing the anode between a pair of spaced-apart first and second crusher plates, each of the crusher plates being provided with a plurality of pointed projections of varying heights and a plurality of recesses of varying depths, the crusher plates being aligned with each other to the effect that tips of projections of the first crusher plate substantially mutually occlude with recesses provided on the second crusher plate and tips of projections of the second crusher plate substantially mutually occlude with recesses provided on the first surface; abruptly reducing the space between adjacent crusher plates said anode bed; moving said crusher plates away from said deformed anode bed and then displacing said deformed bed, along at least a first axis, by at least half the distance between adjacent projection tips of at least one of said crusher plates; again abruptly reducing the space between adjacent crusher plates; and repeating the last two steps until the fragmentation of the bed and the dislodgement of the resulting fragmented particles from the skeletal frame are achieved.