Abstract:
A stage assembly (10) that includes (i) a stage (14) that retains a device (26); (ii) a reaction assembly (18) that is spaced apart from the stage (14); (iii) a stage mover (16) that moves the stage (14), the stage mover (16) including a magnet array (38) that is coupled to the stage (14) and a conductor array (36) that is coupled to the reaction assembly (18); (iv) a temperature adjuster (20); and (v) a control system (22) that selectively controls the temperature adjuster (20). The conductor array (36) includes a set of first zone conductor units (250), and a set of second zone conductor units (252). The temperature adjuster (20) independently adjusts the temperature of the set of first zone conductor units (250), and the set of second zone conductor units (252).
Abstract:
An actuator assembly (16) for moving a device (22) includes a stator component (30), a mover component (32), a measurement system (18), and a signal processor (20). The measurement system (18) includes (i) a magnet assembly (244) that is coupled to and moves with the mover component (32); and (ii) a plurality of spaced apart sensors (246A). The magnet assembly (244) produces a magnetic field (244B) that moves relative to the stator component (30) as the mover component (32) moves along a mover axis (32C). Each sensor (246A) is a transducer that generates a sensor signal that varies its output voltage in response to the changing magnetic field (244B) from the magnet assembly (244) as the mover component (32) is moved relative to the sensors (246A). The signal processor (20) receives the sensor signals and estimates a position of the mover component (32) along the mover axis (32C) based at least in part on the sensor signals.
Abstract:
Coil arrays are disclosed for a planar or linear motor. An exemplary coil array includes multiple coil modules. Each coil module includes at least one coil set, respective electrical circuitry to and from the coil set, at least one respective hydraulic cooling device for the coil set, and respective hydraulic conduitry to and from the cooling device. The coil modules are interchangeably mountable relative to each other in the array such that mounting the coil module to the array produces accompanying hydraulic and electrical connections between the array and coil module, and removing the coil module from the array severs the connections.
Abstract:
An actuator assembly (16) for moving a device (22) includes a stator component (30), a mover component (32), a measurement system (18), and a signal processor (20). The measurement system (18) includes (i) a magnet assembly (244) that is coupled to and moves with the mover component (32); and (ii) a plurality of spaced apart sensors (246A). The magnet assembly (244) produces a magnetic field (244B) that moves relative to the stator component (30) as the mover component (32) moves along a mover axis (32C). Each sensor (246A) is a transducer that generates a sensor signal that varies its output voltage in response to the changing magnetic field (244B) from the magnet assembly (244) as the mover component (32) is moved relative to the sensors (246A). The signal processor (20) receives the sensor signals and estimates a position of the mover component (32) along the mover axis (32C) based at least in part on the sensor signals.
Abstract:
A stage assembly (10) that includes (i) a stage (14) that retains a device (26); (ii) a reaction assembly (18) that is spaced apart from the stage (14); (iii) a stage mover (16) that moves the stage (14), the stage mover (16) including a magnet array (38) that is coupled to the stage (14) and a conductor array (36) that is coupled to the reaction assembly (18); (iv) a temperature adjuster (20); and (v) a control system (22) that selectively controls the temperature adjuster (20). The conductor array (36) includes a set of first zone conductor units (250), and a set of second zone conductor units (252). The temperature adjuster (20) independently adjusts the temperature of the set of first zone conductor units (250), and the set of second zone conductor units (252).
Abstract:
A rotary probe head having a dual interface for probe mounting that allows two separate interfaces to be mounted on opposite sides of the “A” or elevation axis of the rotary probe head. The two interfaces can be rotatable and interchangeable and allow for increased flexibility in handling different types of attachments including attachments having widely different mass, size, and/or interface connections. A probe can be mounted to one interface and a counterweight can be mounted to the opposite interface for improved holding torque performance by reducing the duty force and heat factor generation of the motor in the probe head.
Abstract:
A reaction assembly (20) for supporting a mover (18) includes a countermass assembly (26) and a fluid distribution network (28). The fluid distribution network (28) allows for circulating a fluid (30) to provide cooling for the portion of the mover (18). The fluid distribution network (28) is positioned substantially adjacent to the countermass assembly (26), and the fluid distribution network (28) being substantially thermally decoupled from the structure of the countermass assembly (26) to inhibit thermal deformation of the countermass assembly (26).
Abstract:
Current amplitudes in a motor can be controlled by summing a first signal indicative of an output current of the motor with a current command signal, integrating the current command signal with respect to time, and applying a first controller gain to a second signal indicative of the output current of the motor to obtain a gain-controlled signal indicative of the output current of the motor. The method further includes applying a second controller gain to the current command signal to obtain a gain-controlled current command signal, summing the gain-controlled signal indicative of the output current of the motor with the gain-controlled current command signal to obtain a voltage signal, and inputting the voltage signal to the motor such that current amplitudes in the motor are controlled.