Abstract:
An equipment of a machine tool for exchanging one tool attached to a main spindle into the other tool in a tool pot by memorizing a relative location between a terminated position of the cross rail and an elevator position of the tool pot of the tool-pot magazine mounted at one side of a gate-type column of the machine tool and being provided with corresponding detachable tool therein, calculating necessary movement distance of the tool pot with reference to the relative location, operating the tool-pot magazine by the calculated movement distance by a servo motor, and exchanging one tool attached to a main spindle into the other tool.
Abstract:
A breather 2 on a top of a tank body 1 is opened through a carbon dioxide permeable membrane 3 to an atmospheric air so as to take an inert gas containing plenty of carbon dioxide permeated through the membrane 3 into the tank body 1 by a negative pressure due to reduction of a fuel F in the tank body 1.
Abstract:
A linear motion device includes a guide shaft. A to-be-moved member is supported on the guide shaft, and is linearly movable along the guide shaft. A lead screw extends parallel to the guide shaft. A clamper meshes with the lead screw. The clamper moves as the lead screw rotates. An intermediate member is provided between the to-be-moved member and the clamper. An urging member operates for urging the to-be-moved member toward the clamper and enabling the intermediate member to be seated between the to-be-moved member and the clamper in a manner such that an axis of the intermediate member is nonparallel to the guide shaft.
Abstract:
A breather 2 on a top of a tank body 1 is opened through a carbon dioxide permeable membrane 3 to an atmospheric air so as to take an inert gas containing plenty of carbon dioxide permeated through the membrane 3 into the tank body 1 by a negative pressure due to reduction of a fuel F in the tank body 1.
Abstract:
A lens barrier device 10 includes a pair of lens barrier members 12, 12 having a pair of toggle-lever engagement bosses 12e, 12e, a ring 14 having a pair of recesses 14d, 14d formed on its outer circumferential part, a pair of toggle levers 15, 15 having a pair of triangular cam part 15d, 15d and a base frame 17 supporting the toggle levers 15, 15, and a pair of torsion springs 16, 16 engaged with the toggle levers 15, 15 and the base frame 17. In assembling, the toggle-lever engagement bosses 12e, 12e are freely fitted into the recesses 14d, 14d, respectively. With forward-reverse rotating of the ring 14, by allowing the toggle-lever engagement bosses 12e, 12e to slide along the triangular cam part 15d, 15d while pressing the bosses 12e, 12e through respective ends of the recesses 14d, 14d, the pair of lens barrier members 12, 12 are held in their closed or opened condition by the toggle levers 15, 15 and the torsion springs 16, 16.
Abstract:
In a halftone phase shift mask including a mask substrate and a rectangular pattern having a side (L) formed on the substrate, which is defined within a large pattern which is transferred on a resist material formed on a semiconductor substrate, the rectangular pattern includes a plurality of first opaque patterns, each having a width (ML) equal to 1 to 1½ times the resolution limit of the resist material at least one transparent opening pattern, having a width (MS) less than half the resolution limit, and wherein the number (X) of the opaque patterns and transparent opening patterns is determined by a formula of: X=2P+1, where P=ROUND UP ((L−ML)/(ML+MS)).
Abstract:
A linear motion device includes a guide shaft. A to-be-moved member is supported on the guide shaft, and is linearly movable along the guide shaft. A lead screw extends parallel to the guide shaft. A clamper meshes with the lead screw. The clamper moves as the lead screw rotates. An intermediate member is provided between the to-be-moved member and the clamper. An urging member operates for urging the to-be-moved member toward the clamper and enabling the intermediate member to be seated between the to-be-moved member and the clamper in a manner such that an axis of the intermediate member is nonparallel to the guide shaft.
Abstract:
A memory test system can screen objects of tests accurately at low cost in quasi-operating conditions by utilizing a personal computer (PC). The system utilizes a PC tester comprising a measurement PC unit that carries a memory module to be used as reference; a signal distribution unit for distributing the signal taken out form the measurement PC unit; a plurality of performance boards (PFBs) mounted with respective objected products to be observed simultaneously by using the signals distributed by the signal distribution unit; a display panel for displaying the current status of the test that is being conducted; a power source for producing the operating voltage of the system; and a control PC for controlling the selection of test parameters and various analytical operations. The PC tester is adapted to take out the signal from the chipset LSI (large scale integrated circuit) on the PC mother board in the measurement PC unit to the individual memories on the memory module or the memory module per se and test them in quasi-operating conditions.
Abstract:
A semiconductor device comprises a semiconductor substrate having a first surface and a second surface, and a first multilayer laminated structure film which is formed in the first surface of the semiconductor substrate and has a first layer having a first refractive index, a second layer formed on the first layer and having a second refractive index lower than the first refractive index, and a third layer formed on the second layer and having a third refractive index higher than the second refractive index, and in which the thicknesses of the respective layers are respectively thicknesses calculated by (2N+1)λ/(4n) where the wavelength of light used for detecting the first multilayer laminated structure film is defined as λ, the refractive indices of the respective layers are defined as n, and N is defined as 0 or a natural number.
Abstract:
A semiconductor device comprises a semiconductor substrate having a first surface and a second surface, and a first multilayer laminated structure film which is formed in the first surface of the semiconductor substrate and has a first layer having a first refractive index, a second layer formed on the first layer and having a second refractive index lower than the first refractive index, and a third layer formed on the second layer and having a third refractive index higher than the second refractive index, and in which the thicknesses of the respective layers are respectively thicknesses calculated by (2N+1)λ/(4n) where the wavelength of light used for detecting the first multilayer laminated structure film is defined as λ, the refractive indices of the respective layers are defined as n, and N is defined as 0 or a natural number.