Abstract:
An interface block is constituted by a cleaning/drying processing block and a carry-in/carry-out block. The cleaning/drying processing block includes cleaning/drying processing sections and a transport section. The transport section is provided with a transport mechanism. The carry-in/carry-out block is provided with a transport mechanism. The transport mechanism carries substrates in and out of an exposure device.
Abstract:
An output circuit which outputs an output signal based on an input signal from an output terminal and brings the output terminal into a high impedance state in response to an impedance control signal. The output circuit includes an output pMOS transistor connected at a source thereof to a first power supply. The output circuit includes an output nMOS transistor connected between a drain of the output pMOS transistor and ground. The output circuit includes an output terminal connected between the drain of the output pMOS transistor and a drain of the output nMOS transistor. The output circuit includes a first level shifter circuit which outputs a first gate control signal from a first gate control terminal to control on/off of the output pMOS transistor. The output circuit includes a second level shifter circuit which outputs a second gate control signal from a second gate control terminal to control on/off of the output nMOS transistor.
Abstract:
An interface block is constituted by a cleaning/drying processing block and a carry-in/carry-out block. The cleaning/drying processing block includes cleaning/drying processing sections and a transport section. The transport section is provided with a transport mechanism. The carry-in/carry-out block is provided with a transport mechanism. The transport mechanism carries substrates in and out of an exposure device.
Abstract:
A method of processing a substrate in a substrate processing apparatus that is arranged adjacent to an exposure device and includes first, second and third processing units, includes forming a photosensitive film on the substrate by said first processing unit before exposure processing by said exposure device and applying washing processing to the substrate by supplying a washing liquid to the substrate in said second processing unit after the formation of said photosensitive film and before the exposure processing. The method also includes applying drying processing to the substrate in said second processing unit after the washing processing by said second processing unit and before the exposure processing and applying development processing to the substrate by said third processing unit after the exposure processing. Applying the drying processing to the substrate includes the step of supplying an inert gas onto the substrate, to which the washing liquid is supplied.
Abstract:
A forward direction-only path (first substrate transport path) is formed for transporting substrates in a forward direction to pass the substrates on to an exposing apparatus. A separate, substrate transport path (second substrate transport path) is formed exclusively for post-exposure bake (PEB). Substrate transport along each path is carried out independently of substrate transport along the other. A fourth main transport mechanism is interposed as a predetermined substrate transport mechanism between transfer points consisting of a buffer acting as a temporary storage module for temporarily storing the substrates and a post-exposure bake (PEB) unit corresponding to a predetermined treating unit. This arrangement forms the path for transporting the substrates between the buffer and the PEB unit, to allow PEB treatment of the substrates to be performed smoothly. Similarly, the substrates are transported smoothly to the buffer.
Abstract:
A substrate processing apparatus comprises an indexer block, an anti-reflection film processing block, a resist film processing block, a development processing block, a washing processing block, and an interface block. An exposure device is arranged adjacent to the interface block. The washing processing block comprises washing processing group. A resist film is formed in the resist film processing block. Before the substrate is subjected to exposure processing by the exposure device, the substrate is subjected to washing and drying processing in the washing processing group.
Abstract:
A silicon-on-insulator (SOI) substrate has a grid-line region and a circuit region, and includes a silicon substrate having an upper surface, a first insulating layer having an upper surface and a silicon layer, and which has a grid-line region zoning a circuit region. An element isolation region is formed in the silicon layer of the circuit region of the SOI substrate, and an insulating region is formed in the silicon layer of the grid-line region of the SOI substrate. The insulating region and a portion of the first insulating layer located under the insulating region are removed to define a recess in the grid-line region.
Abstract:
A D/A conversion circuit which can perform D/A conversion at high speed and with high precision is disclosed. The D/A conversion circuit comprises an analog reference power supply, an output buffer, a multiplexer, a pre-buffer, and a current changeover switch. The pre-buffer operates with a power supply voltage different from that of the analog reference power supply, and outputs a voltage substantially equal to an output voltage of the analog reference power supply. For a predetermined period after logic of digital data changes, the output voltage of the pre-buffer is supplied to the output buffer, and an input parasitic capacitor of the output buffer is charged/discharged. After the predetermined period elapses, the output voltage of the analog reference power supply is supplied to the output buffer. Therefore, a charging/discharging current of the input parasitic capacitor does not flow through the analog reference power supply, and fluctuation of the output voltage of the analog reference power supply can be suppressed.
Abstract:
A detected projection is integrally provided on one side of a rotor produced by pressing a plate material. A portion of a rotor is allowed to bulge from one side of the rotor by pressing. At least one end of the projection in a circumferential direction of the rotor is comprised of a shear end face steeply rising from the side of the rotor by a shearing effect during pressing. The shear end face is formed as a sensing end face for an electromagnetic pick-up. The detected projection generates a rotation detecting pulse in an electromagnetic pick-up disposed in proximity to the rotor. The accuracy in size of the projection is enhanced and moreover, when the projection is detected by the electromagnetic pick-up, a pulse wave form is generated clearly and sharply, thereby enhancing the sensing accuracy.
Abstract:
A pseudomorphic HEMT of a structure which prevents the distribution of 2DEG in the channel layer from being concentrated near the hetero-interface relative to a doping layer and which, at the same time, enables the thickness of the channel layer to which distortion is imparted to be decreased. In an n-InAlAs/InGaAs pseudomorphic structure grown on an InP substrate 1, an InGaAs spacer layer 4 having an In composition ratio smaller than that of an InGaAs channel layer 3 is inserted in an InAlAs/InGaAs hetero-interface. The InGaAs channel layer 3 has an In composition ratio of 0.80 to exhibit a high mobility. Another InAlAs buffer layer 2, spacer layer 5 and doping layer 6 have an In composition ratio of 0.52 which is in lattice-match with the substrate, and InGaAs spacer layer 4 and cap layer 7 have an In composition ratio of 0.53 which is in lattice-match with the substrate. This constitution makes it possible to control the two-dimensional electron gas and to further increase the mobility.