摘要:
This specification discloses a method of and an apparatus for manufacturing a disc medium which utilize the projection exposure technique of a stopper for lithography, rotate a circular photosensitive substrate which provides the disc medium at the same speed as a circular reticle having a pattern of information tracks while rotating the reticle, and irradiate the reticle with illuminating light of a slit-like shape or a sectoral shape extending in the diametrical direction of the circular reticle to thereby effect rotation scan exposure.
摘要:
An exposure apparatus illuminates a pattern with an energy beam and transfers the pattern onto a substrate via a projection optical system. The exposure apparatus includes a substrate stage on which the substrate is mounted and that moves within a two-dimensional plane holding the substrate. A supply mechanism supplies liquid to a space between the projection optical system and the substrate on the substrate stage. A recovery mechanism recovers the liquid and an auxiliary recovery mechanism recovers the liquid which could not be recovered by the recovery mechanism.
摘要:
An exposure apparatus exposes a substrate by projecting a pattern image onto the substrate through a liquid. The exposure apparatus includes a projection optical system by which the pattern image is projected onto the substrate, and a movable member which is movable relative to the projection optical system. A liquid-repellent member, at least a part of a surface of which is liquid-repellent, is provided detachably on the movable member, the liquid-repellent member being different from the substrate.
摘要:
An exposure apparatus, wherein an exposure of a substrate (P) is carried out by filling at least a portion of the space between a projection optical system and the substrate (P) with a liquid and projecting an image of a pattern onto the substrate (P) via the projection optical system and the liquid, includes a bubble detector (20) which detects air bubble or bubbles in the liquid between the projection optical system and the substrate (P). Consequently, the exposure apparatus is capable of suppressing deterioration of a pattern image caused by bubbles in the liquid when an exposure is carried out while filling the space between the projection optical system and the substrate with the liquid.
摘要:
A lithographic projection apparatus is arranged to project a pattern from a patterning device onto a substrate through a liquid confined to a space adjacent to the substrate. The apparatus includes a liquid diverter in the space to promote liquid flow across the space.
摘要:
A device manufacturing method includes the steps of providing an immersion liquid between a substrate and at least a portion of a projection system of a lithographic projection apparatus, wherein a non-radiation sensitive material is carried by the substrate, the non-radiation sensitive material being at least partially transparent to radiation and being of a different material than the immersion liquid, the non-radiation sensitive material being provided over at least a part of a radiation sensitive layer of the substrate; and projecting a patterned beam of radiation, through the immersion liquid, onto a target portion of the substrate using the projection system.
摘要:
In an interferometer for detecting interference light between light flux passed through an object to be inspected and reference light to be generated from a portion of the light flux passed therethrough, a phase of the interference light is detected with high precision. The light flux passed through the optical system to be inspected forms a spot image on a pinhole formed in a plate. Measuring light from the spot image and the reference-light diffracted out of the light flux from the spot image at the pinhole create interference light which in turn is received by an observation system. An image of interference fringes formed by the interference light is taken with an image pickup element. Further, heterodyne interference light is created by vibrating the plate in the direction intersecting the light flux or in the direction along the light path of the light flux, thereby detecting a phase of each portion of the interference fringes with high precision.
摘要:
A method of obtaining an optimum exposure condition of a step-and-scan exposure apparatus, the step-and-scan exposure apparatus synchronously moving a mask and a substrate relative to an illumination light to transfer a pattern of the mask onto a plurality of shot areas on the substrate, the method comprising the steps of determining an unevenness of an illuminance of the illumination light, adjusting the illumination light to change the illuminance within a predetermined range, inputting a plurality of first exposure conditions into the step-and-scan exposure apparatus, testing the plurality of first exposure condition in a step-and-repeat mode.
摘要:
A mark for position detection formed on a substrate has a first pattern disposed near the center of the mark and having periodicity in a Y-axis direction, and second patterns respectively disposed near both sides of the first pattern in an X-axis direction and each having periodicity in the X-axis direction. The position of the first pattern is detected by aligning the detection center of a detecting optical system, that is, the minimal aberration point of the detecting optical system, with the center of the first pattern. The positions of the second patterns are detected at respective points symmetric with respect to the minimal aberration point, and the detected values for the positions of the second patterns are averaged. An apparatus for detecting the mark for position detection detects the first and second patterns by image processing when the mark is in a stationary state.
摘要:
A mask pattern is transferred onto a wafer by exposure with a mask stage and a wafer stage being moved synchronously. In global alignment of the mask and the wafer, the scanning direction in the present (second layer) scanning exposure is made coincident with the scanning direction in the preceding (first layer) scanning exposure. When alignment is made by calculating shot array coordinates in advance, shot array coordinates are calculated for each scanning direction.