Abstract:
A method comprises determining in a first network element how much of a received uplink transmission is to be transmitted to a second network element, said first and second network elements both receiving said uplink transmission; and causing at least part of said received uplink transmission to be transmitted to said second network element.
Abstract:
Systems, methods, apparatuses, and computer program products relating to coordinated scheduling with adaptive muting are provided. One method comprises transmitting, by a network element, calculated impact information for a cell of the network element when taking an action related to a cell of the network element and/or taking an action related to a cell of a second network element. The method may also comprise transmitting a request for taking the action related to the cell of the second network element under certain circumstances.
Abstract:
A UE is configured with restrictions that restrict resources carrying RSs and IMRs to specific resources to be used by the UE for determining CSI. The restrictions are both of the following: first restrictions in time, frequency, or both time and frequency of resources that carry the reference signals; and second restrictions in time, frequency, or both time and frequency of resources that carry the interference measurement resources. The RSs and IMRs are transmitted by a base station to and received by the UE. The UE determines the CSI based on the specific resources for the RSs and IMRs. The CSI, determined based on the RS, IMRs, and the restrictions, is received from and transmitted by the UE. The base station uses the CSI for a MU-MIMO transmission. Apparatus, methods, computer software, and program products are disclosed.
Abstract:
A method includes receiving downlink reference signals from a transmit antenna array having of rows of azimuth antenna elements and columns of elevation antenna elements; computing first channel state information feedback components assuming azimuth-only adaptation; computing second channel state information feedback components assuming elevation-only adaptation; computing third channel state information feedback components assuming elevation-adaptation and elevation adaptation; and feeding back the first, second and third channel state information feedback components.
Abstract:
A method and apparatus may include receiving, by a first network node, mapping information from at least one second network node. The mapping information indicates restrictions with respect to antenna ports to be used for measurements on each of one or more channel-state-information-reference-signal resources transmitted by at least one second network node. The method may also include transmitting a message to a user equipment. The message configures the user equipment to measure channel-state-information-reference-signal-received power from at least one of said one or more channel-state-information-reference-signal resources. The method may also include receiving a reporting from the user equipment.
Abstract:
A method and apparatus may include receiving, by a first network node, mapping information from at least one second network node. The mapping information indicates restrictions with respect to antenna ports to be used for measurements on each of one or more channel-state-information-reference-signal resources transmitted by at least one second network node. The method may also include transmitting a message to a user equipment. The message configures the user equipment to measure channel-state-information-reference-signal-received power from at least one of said one or more channel-state-information-reference-signal resources. The method may also include receiving a reporting from the user equipment.
Abstract:
A method and apparatus can be configured to transmit a physical-resource-block muting request to a neighboring network entity. The method can also include transmitting at least one muting priority level for at least one physical-resource-block of the physical-resource-block muting request.
Abstract:
A method comprises determining in a first network element how much of a received uplink transmission is to be transmitted to a second network element, said first and second network elements both receiving said uplink transmission; and causing at least part of said received uplink transmission to be transmitted to said second network element.