摘要:
A control apparatus which is capable of determining an abnormality of a stopping operation of an exhaust valve without using a dedicated sensor for detecting the abnormality in an internal combustion engine including a valve stop mechanism capable of maintaining the exhaust valve and an intake valve in a valve closed state is provided. It is discriminated whether or not there is a change to a rich side of a air fuel ratio of gas detected by a main A/F sensor at the time of a fuel cut for all the cylinders associated with a valve stop request for the exhaust valves and intake valves of all the cylinders. Then, when it is discriminated that there is the change to the rich side of the air fuel ratio of the gas, it is determined that the stopping operation of the exhaust valve is not performed in a normal manner in at least one cylinder.
摘要:
Valve stopping control is performed that changes an operating state of an intake valve and an exhaust valve to a closed-valve stopped state when executing a fuel-cut operation. A device is provided that sets an in-cylinder return-time target air-fuel ratio for an initial two return cycles when returning from a fuel-cut operation. The return-time target air-fuel ratio is set so that respective air-fuel ratios of air-fuel mixtures of fuel and air injected into the same cylinder for respective cycles during the initial return cycles each become values that fall within a combustible range, and so that even if a total amount of fuel injected into the same cylinder for the initial return cycles is supplied into the cylinder during an arbitrary single cycle, the air-fuel ratio of the air-fuel mixture of the total amount of fuel and air becomes a value that falls within the combustible range.
摘要:
A control apparatus for an internal combustion engine is provided, the control apparatus being capable of effectively suppressing the inflow of fresh air into a catalyst due to an operational delay of the valve stop mechanism when an execution request for fuel cut is issued. There is provided a valve stop mechanism capable of changing the operational states of intake valves and exhaust valves between a valve operating state and a valve closed/stopped state. The operational states of the intake and exhaust valves are changed into the valve closed/stopped state, if the engine rotational speed decreases to or below a predetermined rotational speed when the engine rotational speed is higher than the predetermined rotational speed in a case where an execution request for fuel cut is detected and the temperature of the catalyst is not lower than a predetermined temperature during operation of an internal combustion engine.
摘要:
A control apparatus for an internal combustion engine is provided, the control apparatus being capable of effectively suppressing the inflow of fresh air into a catalyst due to an operational delay of the valve stop mechanism when an execution request for fuel cut is issued. There is provided a valve stop mechanism capable of changing the operational states of intake valves and exhaust valves between a valve operating state and a valve closed/stopped state. The operational states of the intake and exhaust valves are changed into the valve closed/stopped state, if the engine rotational speed decreases to or below a predetermined rotational speed when the engine rotational speed is higher than the predetermined rotational speed in a case where an execution request for fuel cut is detected and the temperature of the catalyst is not lower than a predetermined temperature during operation of an internal combustion engine
摘要:
An acceleration request is detected in accordance with an accelerator opening PA (time t3 in FIG. 5B). If the detected acceleration request is a moderate acceleration request, an idle opening TA0 is set as an actual throttle opening TA (FIG. 5E), and a request for retarding an intake valve timing VVT is issued (FIG. 5D). Recovery from fuel cut-off is achieved at time t4 at which a misfire limit value (combustion assurance VVT value L) is reached by an actual VVT value (FIG. 5A).
摘要:
An acceleration request is detected in accordance with an accelerator opening PA (time t3 in FIG. 5B). If the detected acceleration request is a moderate acceleration request, an idle opening TA0 is set as an actual throttle opening TA (FIG. 5E), and a request for retarding an intake valve timing VVT is issued (FIG. 5D). Recovery from fuel cut-off is achieved at time t4 at which a misfire limit value (combustion assurance VVT value L) is reached by an actual VVT value (FIG. 5A).
摘要:
Provided is a control apparatus for an internal combustion engine, which can determine whether or not there is a failure concerning a switching of an operational state of an intake valve, in the internal combustion engine that includes a valve stop mechanism that is capable of switching the operational state of the intake valve between a valve operating state and a valve closed/stopped state, without the need of adding a new sensor for the failure determination. An intake variable valve operating apparatus (66) is provided that includes a valve stop mechanism capable of switching the operational state of the intake valve (62) between the valve operating state and the valve closed/stopped state. A crank angle sensor (72) is provided for detecting the crank angle of the internal combustion engine (12). An intake pressure sensor (56) is provided for detecting the actual intake pressure pim. It is determined whether or not there is a failure concerning the switching of the operational state of the intake valve (62) between the valve operating state and the valve closed/stopped state by the valve stop mechanism, based on an intake pressure difference dlpm (first difference) between the actual intake pressure pim and the pseudo intake pressure pmcrt at a predetermined crank angle (for example, 60° CA after the top dead center in each cylinder).
摘要:
A control apparatus for an internal combustion engine is provided, which is capable of suppressing deterioration of exhaust emission due to an unburned fuel contained in oil which enters a combustion chamber during valve stop control while preventing inflow of fresh air to a catalyst, at a time of valve return following return from fuel cut. Variable valve operating apparatuses having valve stop mechanisms capable of changing operation states of an intake valve and an exhaust valve between valve operation states and valve closed and stopped states are included. Valve stop control that changes the operation states of the intake valve and the exhaust valve to the valve closed and stopped states is performed, at a time of execution of the fuel cut. When a return request from the fuel cut with the valve stop control is detected, a fuel is supplied to a combustion chamber before the operation state of the exhaust valve is returned to the valve operation state. The fuel supply amount in this case is corrected in accordance with an amount of the unburned fuel contained in the oil which enters into the combustion chamber from a crank chamber side during the fuel cut with the valve stop control.
摘要:
An engine includes variable valve mechanisms capable of causing an intake valve and an exhaust valve to stop. An ECU estimates poisoning states of catalysts, and executes and prohibits stopping of the valves based on the poisoning states. When stopping of the valves is prohibited during a fuel-cut operation, the ECU drives a crankshaft of the engine by means of a motor to idle the engine. Thus, even in a hybrid vehicle in which the engine is stopped during a fuel-cut operation, a sufficient amount of oxygen can be rapidly supplied to the catalysts by utilizing a pumping action of pistons, and the catalysts can be caused to recover from rich poisoning efficiently.
摘要:
Valve stopping control is performed that changes an operating state of an intake valve and an exhaust valve to a closed-valve stopped state when executing a fuel-cut operation. A device is provided that sets an in-cylinder return-time target air-fuel ratio for an initial two return cycles when returning from a fuel-cut operation. The return-time target air-fuel ratio is set so that respective air-fuel ratios of air-fuel mixtures of fuel and air injected into the same cylinder for respective cycles during the initial return cycles each become values that fall within a combustible range, and so that even if a total amount of fuel injected into the same cylinder for the initial return cycles is supplied into the cylinder during an arbitrary single cycle, the air-fuel ratio of the air-fuel mixture of the total amount of fuel and air becomes a value that falls within the combustible range.