摘要:
A novel bi-nuclear metal complex with greater luminescence and higher electron transfer potency and an optical device such as organic EL devices using therein the metal complex, are provided, together with a method for producing the novel complex at a higher efficiency. The complex containing specific ligands is represented by the following general formula: General formula �I!: M.sub.2 (L.sup.l -O).sub.m (L.sup.2 -0).sub.n (L.sup.3 -0).sub.3-m-n Xp (wherein M represents a divalent metal atom or Zn; L.sup.1, L.sup.2 and L.sup.3 are ligands, individually different from each other; X represents an anion; "m" and "n" represent independently an integer of 0 to 3; and "p" represents an integer of 0 to 4.).
摘要:
The present invention provides a magnetic recording medium having a magnetic layer comprising a ferromagnetic powder dispersed in a binder so as to exhibit an excellent electromagnetic property.The magnetic recording medium has a magnetic layer formed on a non-magnetic body, from a magnetic paint mainly consisting of a ferromagnetic powder and a binding agent. This magnetic layer also contains a metal chelate compound of a diketone shown in Chemical Formula given below: ##STR1## wherein R.sup.1 to R.sup.3 are selected from a group consisting of hydrogen, halogen, hydroxyl group, nitro group, carboxyl group, carbonyl group, amino group, amide group, and sulfonic acid group as well as alkyl group, aryl group, hetero-aromatic group replaced therewith and wherein the metal of the chelate compound is Ti, Zr, Ni, Sn, Co, or Cr.
摘要:
Disclosed herein are an ionic conductor including a proton conductor, a process for production thereof, and an electrochemical device (such as fuel cell) with said ionic conductor, said ionic conductor being superior in ionic conductivity, water resistance, and film forming properties. The ionic conductor is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups. The polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters; therefore, it permits many ion dissociating functional group to be introduced thereinto. Moreover, if ion dissociating functional groups are introduced into also the connecting group, it is possible to prevent the concentration of ion dissociating functional groups from decreasing as the result of polymerization. The polymer can be easily synthesized by simple condensation, substitution, and hydrolysis. Therefore, the process is suitable for mass production in high yields.
摘要:
An ionic conductor, such as a proton conductor, a process for production thereof, and an electrochemical device, such as fuel cell, that includes the ionic conductor is provided. The ionic conductor of the present invention is formed from a polymer in which carbon clusters having ion dissociating functional groups are bonded to each other through connecting groups which can also include one or more ion dissociating functional groups. In this regard, the polymer is less water-soluble and more chemically stable than a derivative composed solely of carbon clusters, thus displaying enhanced ionic conduction properties.
摘要:
Methods and devices for producing fullerene are provided. The present invention includes a pair of electrodes spaced apart to define a region wherein an arc discharge can be conducted between the electrode pair and a gas containing carbon can be supplied to the region such that fullerene can be easily and readily produced.
摘要:
A method for preparing a carbonaceous complex struture including forming an adherent carbonaceous thin film on a smooth surface of a substrate and forming an adherent fullerine thin film on the thus formed carbonaceous thin film.
摘要:
A light yet highly workable magnetic substance is disclosed which consists mainly of a wholly novel material, fine crystal spherical carbon represented by C.sub.n X.sub.m where n is an integer selected from the group consisting of 60, 70, 76, 84, etc., m represents a positive number not more than n and not zero, and X represents at least one of hydrogen, fluorine, chlorine, bromine and iodine.
摘要:
A clathrate inclusion compound consisting essentially of a cyanine dye and organic host molecules including the cyanine dye therein is described. By the inclusion, the degradation of the cyanine dye by the attack of oxygen is avoided with respect to the absorbance, reflectance and the like characteristics. Optical recording media using the inclusion compound are also described.
摘要:
A method of manufacturing a tubular carbon molecule capable of regularly aligning a carbon nanotube with a finer spacing is provided. A catalyst is arranged on a material substrate (10) made of a semiconductor such as silicon (Si) and including iron (Fe) as a catalyst through the use of melting according to a modulated heat distribution (11). The heat distribution (11) is formed, for example, through diffracting an energy beam (12) by a diffraction grating (13). As a method of arranging the catalyst, for example, iron may be deposited in a planar shape or a projection shape in a position corresponding to the heat distribution (11), or the deposited iron may be used as a master to be transferred to another substrate. A carbon nanotube is grown through the use of the arranged catalyst. The grown carbon nanotube can be used as a recording apparatus, a field electron emission device, an FED or the like.
摘要:
A microelectronic device and a method for producing the device can overcome the disadvantages of known electronic devices composed of carbon molecules, and can deliver performance superior to the known devices. An insulated-gate field-effect transistor includes a multi-walled carbon nanotube (10) having an outer semiconductive carbon nanotube layer (1) and an inner metallic carbon nanotube layer (2) that is partially covered by the outer semiconductive carbon nanotube layer (1). A metal source electrode (3) and a metal drain electrode (5) are brought into contact with both ends of the semiconductive carbon nanotube layer (1) while a metal gate electrode (4) is brought into contact with the metallic carbon nanotube layer (2). The space between the semiconductive carbon nanotube layer (1) and the metallic carbon nanotube layer (2) is used as a gate insulating layer. Two layers including the outer semiconductive carbon nanotube layer (1) and the inner metallic carbon nanotube layer (2) are selected from carbon nanotube layers of a multi-walled carbon nanotube. These layers are processed into a form suitable for use as the multi-walled carbon nanotube (10).