Abstract:
An optoelectronic module (100) is defined, comprising at least one semiconductor chip (10) provided for emitting electromagnetic radiation and at least one holding device (20) which is adapted to fix in place a device (50) for encoding at least one optical or electronic parameter of the optoelectronic module (100). Furthermore, a process for the production of the optoelectronic module (100) is defined.
Abstract:
An optoelectronic module (100) is defined, comprising at least one semiconductor chip (10) provided for emitting electromagnetic radiation and at least one holding device (20) which is adapted to fix in place a device (50) for encoding at least one optical or electronic parameter of the optoelectronic module (100). Furthermore, a process for the production of the optoelectronic module (100) is defined.
Abstract:
A method of processing an optoelectronic component includes a light source having at least one luminous area formed by one or a plurality of light emitting diodes and a receptacle device that receives the light source, including determining a deviation of an actual position of the light source at the receptacle device from a desired position of the light source at the receptacle device, and forming at least one marking at the receptacle device that indicates the deviation.
Abstract:
In at least one embodiment, the optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer configured to generate a primary radiation having a main wavelength less than 500 nm. The semiconductor chip contains a first conversion element configured to generate a first secondary radiation and a second conversion element configured to generate a second secondary radiation. The semiconductor layer sequence is divided into segments that can be controlled electrically independently of each other and that are arranged laterally adjacent to each other. The conversion elements are attached to main radiation sides of the segments. The first secondary radiation is colored light and the second secondary radiation white light.
Abstract:
In at least one embodiment, the optoelectronic semiconductor chip includes a semiconductor layer sequence having an active layer configured to generate a primary radiation having a main wavelength less than 500 nm. The semiconductor chip contains a first conversion element configured to generate a first secondary radiation and a second conversion element configured to generate a second secondary radiation. The semiconductor layer sequence is divided into segments that can be controlled electrically independently of each other and that are arranged laterally adjacent to each other. The conversion elements are attached to main radiation sides of the segments. The first secondary radiation is colored light and the second secondary radiation white light.
Abstract:
A method is set up to operate an arrangement that has N radiation-emitting semiconductor chips arranged in an electric series circuit. The arrangement includes multiple switching elements, wherein to each of the semiconductor chips one of the switching elements is connected electrically in parallel. The arrangement includes a controller for the mutually independent activation of the switching elements. The arrangement includes a constant current circuit for energizing the series circuit. When switching off, the respective semiconductor chip associated with a switching element is bridged electrically by the switching element. A protective module of the arrangement is set up to reduce or to prevent current peaks when one or more of the semiconductor chips is/are switched off.
Abstract:
A method is set up to operate an arrangement that has N radiation-emitting semiconductor chips arranged in an electric series circuit. The arrangement includes multiple switching elements, wherein to each of the semiconductor chips one of the switching elements is connected electrically in parallel. The arrangement includes a controller for the mutually independent activation of the switching elements. The arrangement includes a constant current circuit for energizing the series circuit. When switching off, the respective semiconductor chip associated with a switching element is bridged electrically by the switching element. A protective module of the arrangement is set up to reduce or to prevent current peaks when one or more of the semiconductor chips is/are switched off.