Abstract:
A method of arranging a multiplicity of LEDs in packaging units includes defining a desired range for at least one photometric measurement variable for each of the packaging units; selecting an LED from the multiplicity of LEDs not yet arranged in one of the packaging units; measuring the at least one photometric measurement variable for the selected LED; equipping one of the packaging units containing fewer than N−1 LEDs with the selected LED; storing a measured value and a position of the selected LED in the packaging unit in a memory; repeating until the packaging units are equipped with N−1 LEDs; repeating and calculating the average value of the photometric measurement variable, equipping a packaging unit for which the calculated average value of the variable lies in a defined range with the selected LED; and storing the measured value and the position of the selected LED.
Abstract:
A method of combining LEDs in a packaging unit includes determining a color locus of a multiplicity of LEDs, classifying the LEDs into a plurality of different color locus ranges, each LED classified into a color locus range including the determined color locus of the respective LED, and arranging the LEDs in the packaging unit such that the packaging unit contains a plurality of successive sequences respectively of a plurality of LEDs, wherein each sequence respectively has exactly one LED from each of the color locus ranges, and the LEDs of the different color locus ranges are respectively arranged in the same order within the sequences, wherein the LEDs are arranged in the packaging unit such that they are removable from the packaging unit.
Abstract:
A lighting device and a lighting system are disclosed. In an embodiment, a lighting device includes at least one optoelectronic semiconductor chip, two contacts configured to couple the lighting device to a DC voltage and a driver circuit interconnected in series with the at least one semiconductor chip in a string, wherein the driver circuit comprises a monolithic, unhoused controller, wherein the driver circuit is configured to adjust a current for operating the at least one semiconductor chip, and wherein the string extends between the two contacts in an electrically coupling way.
Abstract:
The invention relates to a light-emitting semiconductor component, having: - a light-emitting semiconductor chip (1) with an active region (11) which, in operation, emits light (31) having a first spectrum; - a wavelength conversion element (2) which is positioned remote from the semiconductor chip (1), is downstream of the semiconductor chip (1) in the beam path of the light (31) having the first spectrum and converts the light (31) having the first spectrum at least partially into light (32) having a second spectrum; and - a filter layer (3), which reflects at least a part (34) of a light (33) incident on the semiconductor component from the outside. The part (34) of the light (33) incident on the semiconductor component from the outside that is reflected by the filter layer (3) has a visible wavelength range and overlaps a colour impression produced by the wavelength conversion element when the semiconductor component is in a switched-off state.
Abstract:
A radiation-emitting optoelectronic component may include a semiconductor chip or a semiconductor laser which, in operation of the component, emits a primary radiation in the UV region or in the blue region of the electromagnetic spectrum. The optoelectronic component may further include a conversion element comprising a first phosphor configured to convert the primary radiation at least partly to a first secondary radiation having a peak wavelength in the green region of the electromagnetic spectrum between 475 nm and 500 nm inclusive. The first phosphor may be or include BaSi4Al3N9, SrSiAl2O3N2, BaSi2N2O2, ALi3XO4, M*(1−x*−y*−z*) Z*z*[A*a*B*b*C*c*D*d*E*e*N4-n*On*], and combinations thereof.
Abstract:
The invention relates to a light-emitting semiconductor component, having: a light-emitting semiconductor chip (1) with an active region (11) which, in operation, emits light (31) having a first spectrum; a wavelength conversion element (2) which is positioned remote from the semiconductor chip (1), is downstream of the semiconductor chip (1) in the beam path of the light (31) having the first spectrum and converts the light (31) having the first spectrum at least partially into light (32) having a second spectrum; and a filter layer (3), which reflects at least a part (34) of a light (33) incident on the semiconductor component from the outside. The part (34) of the light (33) incident on the semiconductor component from the outside that is reflected by the filter layer (3) has a visible wavelength range and overlaps a color impression produced by the wavelength conversion element when the semiconductor component is in a switched-off state.
Abstract:
A lighting device and a lighting system are disclosed. In an embodiment, a lighting device includes at least one optoelectronic semiconductor chip, two contacts configured to couple the lighting device to a DC voltage and a driver circuit interconnected in series with the at least one semiconductor chip in a string, wherein the driver circuit comprises a monolithic, unhoused controller, wherein the driver circuit is configured to adjust a current for operating the at least one semiconductor chip, and wherein the string extends between the two contacts in an electrically coupling way.