Abstract:
A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j−k−2l−3m−4n=w; 0.8≤t≤1; 3.5≤u≤4; 3.5≤v≤4; (−0.2)≤w≤0.2 and 0≤m 0.125 v.
Abstract:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
Abstract:
A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j−k−2l−3m−4n=w; 0.8≤t≤1; −3.5≤u≤4; 3.5≤v≤4; (−0.2)≤w≤0.2 and 0≤m≤0.875 v and/or v≥l≥0.125 v.
Abstract:
A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j−k−2l−3m−4n=w; 0.8≤t≤1; 3.5≤u≤4; 3.5≤v≤4; (−0.2)≤w≤0.2 and 0≤m 0.125 v.
Abstract:
Conversion LED emits primary radiation (peak wavelength 435 nm to 455 nm) and has a luminescent substance-containing layer positioned to intercept the primary radiation and convert it into secondary radiation. First and second luminescent substances are used. The first luminescent substance is a A3B5O12:Ce garnet type emitting yellow green having cation A=75 to 100 mol. % Lu, remainder Y and a Ce content of 1.5 to 2.9 mol. %, where B=10 to 40 mol. % Ga, remainder Al. The second luminescent substance is of the MAlSiN3:Eu calsine type which emits orange red, where M is Ca alone or at least 80% Ca and the remainder of M may be Sr, Ba, Mg, Li or Cu, in each case alone or in combination, wherein some of the Al up to 20%, can be replaced by B, and wherein N can be partially replaced by O, F, Cl, alone or in combination.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
Abstract:
A red-emitting phosphor comprising an Eu2+ doped nitridoaluminate phosphor is provided. The red emitting phosphor comprises an emission maximum in the range of 610 to 640 nm of the electromagnetic spectrum.
Abstract:
A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1−a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.