摘要:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
摘要:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
摘要:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
摘要:
Phospher particles with a Protective Layer and a method for producing phosphor particles with a protective layer are disclosed. In an embodiment the method includes treating Si-containing and/or Al-containing phosphor with an acid solution, wherein a pH value of the acid solution is maintained within a range of pH 3.5 to pH 7 for a period of at least 1 h, wherein an Si-containing layer is formed on the phosphor particles, wherein the Si-containing layer has a higher content of Si on a surface than the phosphor particles, and/or wherein an Al-containing layer is formed on the phosphor particles, wherein the Al-containing layer has a modified content of aluminum on the surface than the phosphor particles and tempering the treated phosphor particles at a temperature of at least 100° C. thereby producing the protective layer.
摘要:
A method can be used for producing a powdery precursor material for an optoelectronic component having a first phase of the following general composition (Ca1-a-b-c-d-eZndMgeSrcBabXa)2Si5N8, wherein X is an activator that is selected from the group of the lanthanoids and wherein the following applies: 0
摘要:
Wavelength converters including coarse particles/grains of a red nitride phosphor are disclosed. In some embodiments the red nitride phosphor is a (Ca,Sr,Ba)2Si5N8:Eu phosphor with a D50 grain size or a D50 particle size that is ≥5 microns. The red nitride phosphor may be encapsulated within an organic matrix or present in an inorganic matrix. In the latter case, the inorganic matrix may include fine grains with a D50 grain size
摘要:
Wavelength converters including coarse particles/grains of a red nitride phosphor are disclosed. In some embodiments the red nitride phosphor is a (Ca,Sr,Ba)2Si5N8:Eu phosphor with a D50 grain size or a D50 particle size that is ≥5 microns. The red nitride phosphor may be encapsulated within an organic matrix or present in an inorganic matrix. In the latter case, the inorganic matrix may include fine grains with a D50 grain size
摘要:
A method for producing phosphor particles with at least one first protective layer and a phosphor particles having at least one protective layer are disclosed. In an embodiment, a method includes providing phosphor particles and applying at least one first protective layer to the surface of the phosphor particles, wherein the at least of first protective layer include depositing a first starting compound by a first atomic layer deposition on the surface of the phosphor particles and depositing a second starting compound by a second atomic layer deposition on the surface of the phosphor particles.
摘要:
A radiation-emitting optoelectronic device, a method for using a radiation-emitting optoelectronic device and a method for making a radiation-emitting optoelectronic device are disclosed. In an embodiment, the device includes a semiconductor chip configured to emit a primary radiation and a conversion element including a conversion material which comprises Cr and/or Ni ions and a host material and which, during operation of the device, converts the primary radiation emitted by the semiconductor chip into a secondary radiation of a wavelength between 700 nm and 2000 nm, wherein the host material comprises EAGa12O19, AyGa5O(15+y)/2, AE3Ga2O14, Ln3Ga5GeO14, Ga2O3, Ln3Ga5.5D0.5O14 or Mg4D2O9, wherein EA=Mg, Ca, Sr and/or Ba, A=Li, Na, K and/or Rb, AE=Mg, Ca, Sr and/or Ba, Ln=La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and/or Lu and D=Nb and/or Ta, and wherein y=0.9-1.9.
摘要:
A radiation-emitting optoelectronic device, a method for using a radiation-emitting optoelectronic device and a method for making a radiation-emitting optoelectronic device are disclosed. In an embodiment, the device includes a semiconductor chip configured to emit a primary radiation and a conversion element including a conversion material which comprises Cr and/or Ni ions and a host material and which, during operation of the device, converts the primary radiation emitted by the semiconductor chip into a secondary radiation of a wavelength between 700 nm and 2000 nm, wherein the host material comprises EAGa12O19, AyGa5O(15+y)/2, AE3Ga2O14, Ln3Ga5GeO14, Ga2O3, Ln3Ga5.5D0.5O14 or Mg4D2O9, wherein EA=Mg, Ca, Sr and/or Ba, A=Li, Na, K and/or Rb, AE=Mg, Ca, Sr and/or Ba, Ln=La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and/or Lu and D=Nb and/or Ta, and wherein y=0.9-1.9.