Abstract:
An optoelectronic semiconductor component is disclosed. In an embodiment, the semiconductor component includes at least one optoelectronic semiconductor chip for generating primary radiation in a near-ultraviolet or in a visible spectral range, at least one phosphor for partial or complete conversion of the primary radiation into a longer-waved secondary radiation which is in the visible spectral range and at least one filter substance for partial absorption of the secondary radiation, wherein the phosphor and the filter substance are closely connected to the semiconductor chip.
Abstract:
Conversion LED emits primary radiation (peak wavelength 435 nm to 455 nm) and has a luminescent substance-containing layer positioned to intercept the primary radiation and convert it into secondary radiation. First and second luminescent substances are used. The first luminescent substance is a A3B5O12:Ce garnet type emitting yellow green having cation A=75 to 100 mol. % Lu, remainder Y and a Ce content of 1.5 to 2.9 mol. %, where B=10 to 40 mol. % Ga, remainder Al. The second luminescent substance is of the MAlSiN3:Eu calsine type which emits orange red, where M is Ca alone or at least 80% Ca and the remainder of M may be Sr, Ba, Mg, Li or Cu, in each case alone or in combination, wherein some of the Al up to 20%, can be replaced by B, and wherein N can be partially replaced by O, F, Cl, alone or in combination.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes Sr(SraCa1-a)Si2Al2N6:Eu, wherein x is 0.8
Abstract:
A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1−a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
Abstract:
A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1−a)Si2Al2N61.
Abstract:
An optoelectronic semiconductor component is disclosed. In an embodiment, the semiconductor component includes at least one optoelectronic semiconductor chip for generating primary radiation in a near-ultraviolet or in a visible spectral range, at least one phosphor for partial or complete conversion of the primary radiation into a longer-waved secondary radiation which is in the visible spectral range and at least one filter substance for partial absorption of the secondary radiation, wherein the phosphor and the filter substance are closely connected to the semiconductor chip.
Abstract:
A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1−a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.