摘要:
Systems and methods are described for a continuous-time sigma-delta modulator with discrete time common-mode feedback. The method includes calculating an integrator input signal as a difference between an input signal and a modulation feedback signal, continuous time integrating the integrator input signal to produce an integrator output signal having a common mode voltage, determining the common mode voltage of the integrator output signal using a discrete-time process, determining an integrator feedback signal as a function of the common-mode voltage and feeding back the feedback signal to the integrator in order to maintain the common mode voltage at a substantially constant value, sampling and quantizing the integrator output signal to produce a sigma-delta modulated output signal and converting the sigma-delta modulated output signal from a digital signal to an analog signal, to produce the modulation feedback signal.
摘要:
Systems and methods are described for a digital tuning scheme for continuous-time sigma-delta modulation. The method includes integrating a voltage from a voltage source using a discrete-time integrator to produce a discrete-time integrator output, continuous-time integrating a current from a controllable current source to produce a continuous-time integrator output, quantizing the difference between the continuous-time integrator output and the discrete-time integrator output to produce a quantizer output, controlling a polarity of the controllable current source with the quantizer output, counting the quantizer output to produce a feedback signal, and tuning the controllable current source as a function of the feedback signal.
摘要:
In accordance with embodiments of the present disclosure, a continuous-time incremental analog-to-digital converter (ADC) may include a plurality of resettable integrators and a feed-in gain element. Each integrator may be configured to convert a sum of signals received at its input to a signal indicative of an integral over time of the sum of signals. The plurality of integrators may include a first-stage integrator configured to receive at its input the baseband signal and a final-stage integrator configured to produce at its output a final-stage analog signal. The plurality of integrators may be arranged in a cascade configuration such that an output of each of the plurality of integrators other than the final-stage integrator is coupled to the input of a subsequent integrator. The feed-in gain element may be coupled between the input of the first-stage integrator and the input of another integrator of the plurality of integrators.
摘要:
In accordance with some embodiments of the present disclosure, a multi-band transmitter comprises a plurality of band paths with each band path configured for a different frequency range. Each band path comprises a modulator configured to modulate a data signal onto a carrier signal associated with the frequency range of the band path to generate a radio frequency (RF) signal associated with the band path and frequency range of the band path. Each band path also comprises a step-down balun that includes an input coil configured to receive the RF signal from the modulator. Each band path further comprises a tuner configured to tune the input coil to the frequency range of the band path. The tuner is also configured to compensate for off-state conduction of switches of the tuner to reduce non-linear tuning effects of the balun associated with the off-state conduction.
摘要:
In accordance with embodiments of the present disclosure, a continuous-time incremental analog-to-digital converter (ADC) may include a plurality of resettable integrators and a feed-in gain element. Each integrator may be configured to convert a sum of signals received at its input to a signal indicative of an integral over time of the sum of signals. The plurality of integrators may include a first-stage integrator configured to receive at its input the baseband signal and a final-stage integrator configured to produce at its output a final-stage analog signal. The plurality of integrators may be arranged in a cascade configuration such that an output of each of the plurality of integrators other than the final-stage integrator is coupled to the input of a subsequent integrator. The feed-in gain element may be coupled between the input of the first-stage integrator and the input of another integrator of the plurality of integrators.
摘要:
In accordance with some embodiments of the present disclosure, a multi-band transmitter comprises a plurality of band paths with each band path configured for a different frequency range. Each band path comprises a modulator configured to modulate a data signal onto a carrier signal associated with the frequency range of the band path to generate a radio frequency (RF) signal associated with the band path and frequency range of the band path. Each band path also comprises a step-down balun that includes an input coil configured to receive the RF signal from the modulator. Each band path further comprises a tuner configured to tune the input coil to the frequency range of the band path. The tuner is also configured to compensate for off-state conduction of switches of the tuner to reduce non-linear tuning effects of the balun associated with the off-state conduction.
摘要:
A system and method for analog-to-digital conversion using digital pulse width modulation (PWM) is disclosed. The method and system according to the disclosed invention converts an analog input signal to a digital signal in pulse code modulated (PCM) form. The disclosed invention uses a feedback circuit to perform PWM of the analog input signal. The PWM signal is then decimated to obtain the digital signal in PCM form. The system according to the disclosed invention requires lower operating frequency and dissipates lesser power than prior art systems providing the same sampling frequency and resolution. The operation at a lower frequency is achieved by obtaining two samples from every pulse of the PWM signal; the first sample being obtained from the right duty ratio, and the second sample being obtained form the left duty ratio. Further, the disclosed invention has lesser implementation complexity and higher signal-to-noise ratio than prior art.
摘要:
A technique for improving the linearity of a mixer is disclosed. A converter may include a mixer comprising a first metal-oxide semiconductor field-effect transistor (MOSFET) having a gate, a first conducting terminal coupled to an input of the converter, and a second conducting terminal coupled to an output of the converter, and a mixer driver having a first output coupled to the gate of the first MOSFET, the mixer driver configured to receive a local-oscillator signal having a first phase and a second phase, drive the first MOSFET off during the first phase of the local-oscillator signal, drive the first MOSFET on for a first period of time in response to a transition from the first phase of the local-oscillator signal to the second phase of the local-oscillator signal, and force the gate of the first MOSFET into a high impedance state for a second period of time during the second phase of the local-oscillator signal and after the expiration of the first period of time.
摘要:
A source device (110) receives a carrier signal and continuously monitors the carrier signal for a first predetermined condition and a second predetermined condition. The source device (110) transmits data if the first predetermined condition is satisfied. The source device (110) ceases transmission of data if the first predetermined condition subsequently is not satisfied or if a second predetermined condition is satisfied.
摘要:
A direct digital synthesis circuit (108) includes a plurality of current sources (210, 211, 212), an output circuit (200), and a logical multiplier circuit (202). The output circuit (200) provides a synthesized waveform (164) output and includes a first (206) and second branch (208). The logical multiplier circuit (202) is operatively coupled to the plurality of current sources (210, 211, 212) and to the output circuit (200). The logical multiplier circuit (202) is operative to receive a plurality of signals. The logical multiplier circuit is also operative to selectively increase a first current flow through the first branch (206) by a determined magnitude and decrease a second current flow through the second branch (208) by the determined magnitude based on the plurality of signals. The synthesized waveform (164) is based on the first and second currents.