摘要:
An apparatus for and a method of controlling a laser oscillator for use as a laser source in a machining operation or the like is disclosed. In particular, the present invention compensates for a deviation of an actual input/output characteristic of a laser oscillator from a normal (expected) input/output characteristic due to, for example, aging and the like. The present invention approximates the actual input/output characteristic and stores the characteristic as a pattern in a storage device. In response to a detection of the actual laser output and an external intensity command signal, the present invention refers to the input/output characteristic pattern thus approximated and generates an input intensity command signal for controlling the laser oscillator to accurately produce the desired laser beam intensity irrespective of the deviation between the actual input/output characteristic and the normal characteristic.
摘要:
In a laser beam machining method for a wiring board, a machined portion of the wiring board is irradiated with a pulsed laser beam for a beam irradiation time ranging from about 10 to about 200 μs and with energy density of about 20 J/cm2 or more, thereby machining the wiring board, for example, drilling for a through-hole and a blind via hole, grooving, and cutting for an outside shape.
摘要:
In a laser beam machining method for a wiring board, a machined portion of the wiring board is irradiated with a pulsed laser beam for a beam irradiation time ranging from about 10 to 200 μs and with energy density of about 20 J/cm2 or more, thereby machining the wiring board, for example, drilling for a through-hole and a blind via hole, grooving, and cutting for an outside shape. The laser beam operates at a frequency of more than 67 Hz, and the spot of the laser beam is sequentially moved to different drilling positions for each pulse. After all of many drilling positions in the range of a scan vision are irradiated with the laser beam pulse by pulse, or after the elapse of a time of 15 ms or more from irradiation of the first drilling position, the laser spot is returned to the first drilling position. The spot is sequentially moved once again, and the movement is repeated several times. A pause of 15 ms or more is required between pulses directed to the same drilling position to avoid formation of a thick char layer and projection of glass cloth into the hole.
摘要:
In a laser beam machining method for a wiring board, a machined portion of the wiring board is irradiated with a pulsed laser beam for a beam irradiation time ranging from about 10 to about 200 &mgr;s and with energy density of about 20 J/cm2 or more, thereby machining the wiring board, for example, drilling for a through-hole and a blind via hole, grooving, and cutting for an outside shape.
摘要:
In pulse welding apparatus of arc welding or short-circuit transfer type arc welding in which a pulse discharge created on the tip of a wire electrode is utilized to perform welding, when a molten droplet produced on the tip of wire electrode is late to separate from the wire due to variations of welding conditions and external disturbances, the wire-supplying speed at which the wire is supplied to the weld zone changes causing undercut. To prevent this, pulse current supplied to the base metal is divided into a plurality of pulse groups and the average current reaches the maximum peak value at a predetermined time after beginning of outputting the pulses, and the group of pulse currents is of a hill-shape in its envelope in accordance with the separation phenomenon of molten droplet, and the group of pulse currents is arranged to have different pulse period, pulse width, and pulse interval. In sort-circuiting arc welding, the short-circuit and arc are instantly controlled in accordance with the detected arc length or wire-supplying speed. This ensures the separation of the molten droplet and its transfer onto the base metal in regular manner. As a result, the growth and separation of molten droplet is not affected by magnetic blow of arc but is controllable.
摘要:
In pulse welding apparatus of arc welding or short-circuit transfer type arc welding in which a pulse discharge created on the tip of a wire electrode is utilized to perform welding, when a molten droplet produced on the tip of wire electrode is late to separate from the wire due to variations of welding conditions and external disturbances. The wire-supplying speed at which the wire is supplied to the weld zone changes. This causes undercut, i.e., a defect in welding bead-shape that presents adverse effect to welding quality. To prevent this problem, pulse current supplied to the base metal is divided into a plurality of pulse groups and the average current reaches the maximum peak value at a predetermined time after beginning of outputting the pulses, and the group of pulse currents is of a hill-shape in its envelope in accordance with the separation phenomenon of molten droplet, and the group of pulse currents is arranged to have different pulse period, pulse width, and pulse interval. In the sort-circuiting arc welding, the short-circuit and arc are instantly controlled in accordance with the detected arc length or wire-supplying speed.
摘要:
A pulse welding apparatus using a pulse discharge such as a pulse arc welding apparatus and a short-circuit transfer arc welding apparatus. A pulse current waveform control circuit, which controls the pulse arc current so that a desired pulse arc current is supplied to the arc welding power supply for outputting the pulse arc current to the welding load unit, is constructed such that the optimum welding operation may be performed without having to adjust circuit components and modify circuit design. The pulse current waveform control circuit is in the form of a microcomputerized digital circuit which operates under a program to provide a desired pulse arc current. A modification of the program can provide any desired pulse arc currents without changing circuits. The optimum welding current waveform parameters or a target arc length signal is learned in the first welding stage and stored into a memory. An arc length feedback control or a current waveform control is performed under the control of program on the basis of the optimum welding current waveform parameters or the target arc length signal so as to control the faulty separation of globules when magnetic blow occurs and so as to reduce the variation of arc length due to external disturbances occurring at the welding torch so that improved welding quality is ensured under various environment.
摘要:
A pulsed arc welding for carrying out arc welding or short-circuit transfer type arc welding by utilizing the pulsed discharge generated at the tip of a wire electrode. The propensity of wire electrode curvature causes irregular changes in the contact point of the wire electrode and variations in the arc length between the wire electrode tip and workpieces. Consequently, the invention detects arc voltage and current and checks the instantaneous variation in the arc length. The arc voltage value thus detected is converted to a reference arc voltage variable. Then the detected arc voltage value is compared with the reference value to compute a true arc length. A simulation arc length signal, which varies as welding proceeds, and a reference simulation welding current waveform are set, to compare the simulation arc length signal with the computed arc length signal. The reference simulation welding current waveform is corrected according to this difference signal to form and output a welding current waveform, which is controllable instantaneously to provide an ideal target arc length. Welding can be carried out with stability since the wire electrode is allowed to hold the simulation arc length during each welding process.
摘要:
The welding equipment according to the present invention divides the pulsed electric current fed to a base metal in the course of a welding process into a plural number of pulse groups, performing instantaneous control over the base electric current period and the base electric current value applied to each of the pulse intervals of the individual pulses within such a group of pulsed electric currents and to each of the groups of pulsed electric currents, the pulse peak value and pulse width of each pulse, and such instantaneous control over a short circuit period and an arc period in the course of performance of the short circuiting transfer arc welding process, in accordance with the detected arc length, in such a manner that an ideal target arc length is thereby achieved. The welding equipment is capable of achieving the separation and transfer of molten globules to the base metal with regularity and also reducing the fluctuations in the short circuit period and the arc period in the short circuiting transfer arc welding process, offering the advantage that the equipment can control the growth and separation of molten globules without being affected by the phenomenon of magnetic arc blow of the arc and can achieve improvements on the quality of weldments even if fluctuations should occur in the shape of welded joints and in the position of the earthing point in operation with the actual arc.
摘要:
A pulse welding apparatus using a pulse discharge such as a pulse arc welding apparatus and a short-circuit transfer arc welding apparatus. A pulse current waveform control circuit, which controls the pulse arc current so that a desired pulse arc current is supplied to the arc welding power supply for outputting the pulse arc current to the welding load unit, is constructed such that the optimum welding operation may be performed without having to adjust circuit components and modify circuit design. The pulse current waveform control circuit is in the form of a microcomputerized digital circuit which operates under a program to provide a desired pulse arc current. A modification of the program can provide any desired pulse arc currents without changing circuits. The optimum welding current waveform parameters or a target arc length signal is learned in the first welding stage and stored into a memory. An arc length feedback control or a current waveform control is performed under the control of program on the basis of the optimum welding current waveform parameters or the target arc length signal so as to control the faulty separation of globules when magnetic blow occurs and so as to reduce the variation of arc length due to external disturbances occurring at the welding torch so that improved welding quality is ensured under various environments.