摘要:
The present invention relates to methods for the production of microorganisms with increased efficiency for methionine synthesis, microorganisms with increased efficiency for methionine synthesis, and methods for determining the optimal metabolic flux for organisms with respect to methionine synthesis.
摘要:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
摘要:
The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
摘要:
This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
摘要:
The present invention relates to microorganisms, in particular C. glutamicum in which the formation of N5,N10-methylene-THF is increased.The present invention also relates to the use of such microorganisms for producing methionine.
摘要:
The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
摘要:
The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate by enzymes that contribute to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
摘要:
The present invention features methods of producing panto-compounds (e.g., pantothenate) using microorganisms in which the pantothenate biosynthetic pathway and/or the isoleucine-valine biosynthetic pathway and/or the coenzymeA biosynthetic pathway has been manipulated. Methods featuring ketopantoate reductase overexpressing microorganisms as well as aspartate α-decarboxylase overexpressing microorganisms are provided. Methods of producing panto-compounds in a precursor-independent manner and in high yield are described. Recombinant microorganisms, vectors, isolated nucleic acid molecules, genes and gene products useful in practicing the above methodologies are also provided. The present invention also features a previously unidentified microbial pantothenate kinase gene, coaX, as well as methods of producing panto-compounds utilizing microorganisms having modified pantothenate kinase activity. Recombinant microorganisms, vectors, isolated coaX nucleic acid molecules and purified CoaX proteins are featured. Also featured are methods for identifying pantothenate kinase modulators utilizing the recombinant microorganisms and/or purified CoaX proteins of the present invention.
摘要:
This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
摘要:
A method is disclosed for the increased production of biotin and the biotin precursor dethiobiotin using a bacterium that produces a lysine-utilizing DAPA aminotransferase. This method involves the use of a bacterium that is either grown in the presence of lysine or deregulated for lysine biosynthesis.