Abstract:
A gate driving circuit that controls a switching element includes: a startup switch which is provided between a gate voltage source and an output terminal; a termination switch which is provided between the output terminal and an output ground terminal; a startup resistor provided between a gate and a source of the startup switch; and a termination resistor provided between a gate and a source of the termination switch. At least one of the startup resistor or the termination resistor is configured to adjust a resistance value.
Abstract:
A resonant coupler includes, on the main surface of a first dielectric substrate: a first resonant line disposed in a circumferential shape and having proximate first and second ends; an input line into which a signal is inputted; and a first connecting line that grounds a first end of the first resonant line, and, similar to the first dielectric substrate, includes, on the main surface of a second dielectric substrate: a second resonant line; an output line; and a second connecting line. When viewed in a direction perpendicular to the main surface of the first dielectric substrate, the first resonant line and the second resonant line have substantially matching contours, and the first resonant line and the second resonant line have a combined shape that is symmetrical about a line.
Abstract:
Optical encoder includes a light source, a reflector, and a light receiver. Reflector has a plurality of reflection areas that include M-code areas and reflects a light from light source by one or more areas, corresponding to n-bits, of M-code areas. Light receiver receives a reflection light from reflector to perform a photoelectric conversion on reflection light. M-code areas has a first face corresponding to first code information and a second face corresponding to second code information and having an inclination structure different from that of first face. Light receiver has first and second light-receiving groups. First light-receiving group includes a plurality of first light-receiving elements receiving reflection light reflected from first face. Second light-receiving group includes a plurality of second light-receiving elements receiving reflection light reflected from second face. Positions of first light-receiving elements and positions of second light-receiving elements are shifted from each other in one direction.
Abstract:
An encoder includes: a rotating plate; an irradiator that irradiates the rotating plate with light; and a light receiver that receives the light which has been emitted from the irradiator and traveled via the rotating plate. The rotating plate includes at least one curved surface, and the irradiator simultaneously irradiates each of a plurality of surfaces including the curved surface with light.
Abstract:
An encoder includes rotatable plate including first and second patterns, light emission unit, and light receiving unit. The first pattern includes first and second unit regions. The first unit regions guide the light from light emission unit to the light receiving unit. The second unit regions are configured not to guide light from the light emission unit to the light receiving unit. The second pattern includes first and second unit regions. The first unit regions of the second pattern guide light from light emission unit to the light receiving unit. The second unit regions of the second pattern are configured not to guide light from the light emission unit to the light receiving unit. The first and second unit regions of the first pattern are reverse to the first and second unit regions of the second pattern in a direction perpendicular to a rotation direction of the rotatable plate.
Abstract:
A high-frequency transmission device includes first and second resonators as ring-shaped wires each having an opening part at a part thereof, first and second input/output terminals each electrically connected to both resonators, a first ground shield formed on a plane different from planes on which both resonators are arranged, a second ground shield formed on a plane different from the planes on which both resonators and the first ground shield are arranged, and first and second ground wires each formed to surround peripheries of both resonators. The ground shields and the ground wires are respectively connected to each other. A dielectric wire is present between both ground wires, and the ground wires are not electrically connected to each other.
Abstract:
A power semiconductor element includes: a main transistor including a first gate electrode, a first drain electrode, and a first source electrode; a sensor transistor including a second gate electrode, a second drain electrode, and a second source electrode; and a gate switch transistor including a third gate electrode, and a third drain electrode, a third source electrode. The first gate electrode, the second gate electrode, and the third drain electrode are connected, the first drain electrode and the second drain electrode are connected, the first source electrode and the second source electrode are connected via a sensor resistor, the first source electrode and the third source electrode are connected, the second source electrode and the third gate electrode are connected via a switch resistor, and the main transistor, the sensor transistor, and the gate switch transistor are formed with a nitride semiconductor.