Abstract:
A heat pump device for a vehicle, capable of effectively utilizing the heat of structural members. This heat pump device for a vehicle comprises: an electric compressor for compressing and discharging refrigerant; and a high-temperature water-refrigerant heat exchanger for conducting heat exchange between the high-temperature, high-pressure refrigerant discharged by the electric compressor and a first cooling liquid which is antifreeze; the high-temperature water-refrigerant heat exchanger surrounding and being in contact with the electric compressor so as to be capable of heat exchange with the electric compressor.
Abstract:
A battery pack includes a battery module group including a plurality of battery modules, a coolant layer configured to allow a coolant to circulate, and a refrigerant layer configured to allow a refrigerant to circulate. The coolant layer includes a first surface and a second surface opposite to the first surface. The refrigerant layer includes a third surface and a fourth surface opposite to the third surface. The first surface of the coolant layer is closer to the battery module group than the second surface of the coolant layer. The third surface of the refrigerant layer is closer to the battery module group than the fourth surface of the refrigerant layer. The battery module group is arranged along the first surface of the coolant layer. At least part of the coolant layer is arranged between the refrigerant layer and the battery module group in a plan view.
Abstract:
A vehicle includes a first heat exchanger plate and a second heat exchanger plate. The first heat exchanger plate includes a first coolant layer in which a coolant flows and a refrigerant layer in which a refrigerant flows, and the second heat exchanger plate includes a second coolant layer in which the coolant flows. The first coolant layer and the second coolant layer are connected to each other via a coolant layer connection passage.
Abstract:
The vehicle air conditioning device has a first refrigeration cycle and second refrigeration cycle that have a portion of a refrigeration pathway in common, and form different heat pump cycles; a first water-refrigerant heat exchanger included in the first refrigeration cycle, exchanges heat between a low-temperature and low-pressure refrigerant and the coolant of a heat-generating member of the vehicle, and vaporizes the refrigerant; a flow rate adjustment means that adjusts the flow rate of the coolant flowing through the heat-generating member and the first water-refrigerant heat exchanger; a detection means that detects a decline in the amount of refrigerant in the first refrigeration cycle due to the inflow of the refrigerant into the second refrigeration cycle; and a control means that, when a decline in the amount of refrigerant in the first refrigeration cycle has been detected, controls the flow rate adjustment means, reducing the flow rate of the coolant.
Abstract:
A heat exchange plate includes a coolant layer, a refrigerant layer, a first end portion, and a second end portion opposite to the first end portion. The refrigerant layer includes a refrigerant input portion disposed at the first end portion, a refrigerant output portion disposed at the first end portion, a first refrigerant flow path connected to the refrigerant input portion, a second refrigerant flow path connected to the refrigerant output portion, and a connection portion connecting the first and second refrigerant flow paths. The first refrigerant flow path includes a first branch portion, a first converging portion, and a plurality of first branch flow paths connecting the first branch portion and the first converging portion, and the second refrigerant flow path includes a second branch portion, a second converging portion, and a plurality of second branch flow paths connecting the second branch portion and the second converging portion.
Abstract:
Provided is a vehicular air conditioning device which is based on a configuration adopted in a conventional vehicle including a hot-water heater, a heat-pump cooling device, and a control system, and which is capable of increasing heating performance at low cost and with a small increase in installation space. This vehicular air conditioning device is provided with: a first water refrigerant heat exchanger that vaporizes a refrigerant; a second water refrigerant heat exchanger that condenses the refrigerant; and a switching means capable of switching between a state in which the refrigerant flows in a refrigerant circuit including the second water refrigerant heat exchanger, a compressor, and the first water refrigerant heat exchanger, and a state in which the refrigerant flows in another refrigerant circuit including an evaporator, the compressor, and a condenser.
Abstract:
The vehicle air conditioning device is equipped with: a heater core that imparts heat to air flowing to the vehicle cabin interior by flowing a high temperature cooling liquid; a first water-refrigerant heat exchanger that exchanges heat between the cooling liquid and the high-temperature, high-pressure refrigerant in a heat pump, thus condensing the refrigerant; a flow rate adjustment means that adjusts the flow rate of the cooling liquid flowing through the heater core and the first water-refrigerant heat exchanger; and a control unit that performs air conditioning control. The control unit controls the flow rate adjustment means, and adopts a configuration that for a predetermined time period from the starting up of the heat pump, sets the flow rate of the cooling liquid to a second flow rate that is lower than a first flow rate during standard operating.
Abstract:
A vehicle air conditioner includes: a compressor that compresses a refrigerant; a heat exchanger that performs heat exchange between the refrigerant and a heat transporting coolant; a condenser that condenses the refrigerant having a high-temperature and a high-pressure by dissipating heat thereof; an evaporator that performs heat exchange between air sent to a vehicle interior and the refrigerant having a low-temperature and a low-pressure; a refrigerant passage that flows the refrigerant therein; and an on-off valve capable of shutting off the refrigerant passage. A part of the refrigerant passage from the condenser to the compressor in the air-cooling refrigerant circuit is branched into a first passage passing through the evaporator and a second passage passing through the heat exchanger being in parallel to the evaporator. The on-off valve is disposed upstream of the heat exchanger in the second passage.
Abstract:
The vehicular air conditioning device is provided with: a first water-refrigerant heat exchanger that vaporizes refrigerant by exchanging heat between the refrigerant of low temperature and low pressure in a heat pump and a cooling fluid for the heat generating component of the vehicle; and a second water-refrigerant heat exchanger that condenses the refrigerant by exchanging heat between the refrigerant of high temperature and high pressure in the heat pump and a cooling fluid for heat transport. The vehicular air conditioning device is configured such that the second water-refrigerant heat exchanger is connected, in a cooling fluid circulable manner, to a heater core for providing heat to air supplied into the cabin. The first water-refrigerant heat exchanger is connected, in a cooling fluid circulable manner, to a passageway for cooling the heat generating component without passing through the heater core.
Abstract:
A heat pump device is provided with: a first refrigerant guide-in unit that guides in the high temperature, high pressure refrigerant discharged by the compressor from outside the housing; a water refrigerant heat exchanger that can dissipate heat from the high temperature, high pressure refrigerant guided in from the first refrigerant guide-in unit into a cooling fluid; and a housing accommodating the water refrigerant heat exchanger. The heat pump device is further provided with a cooling fluid guide-in unit that can guide the cooling fluid from outside the housing into the water refrigerant heat exchanger, a cooling fluid guide-out unit that can guide the cooling fluid out of the water refrigerant heat exchanger to the outside of the housing, and a first refrigerant guide-out unit that guides the refrigerant that has passed through the water refrigerant heat exchanger to the outside of the housing.