Abstract:
Disclosed are an uncut chip plate and a chip substrate. The uncut chip plate includes: conductive portions laminated in one direction to constitute the uncut chip plate; insulation portions alternately laminated with the conductive portions to electrically isolate the conductive portions; and cavities formed at a predetermined depth in a hemispherical concave shape in regions including each of the insulation portions in a corresponding relationship with unit chip substrates defined on an upper surface of the uncut chip plate. According to the present invention, an optical element chip package exhibiting a high illuminance in a central portion can be realized through the use of an easy-to-process planar lens. Furthermore, as compared with a case where a hemispherical lens is used, it is possible to reduce the thickness of the chip package. This makes it possible to reduce the thickness of a device to which the chip package is applied.
Abstract:
Proposed is a UV sterilizer. In a UV sterilizer according to an embodiment of the present disclosure, a light source module that emits ultraviolet (UV) light is provided between an upper body and a lower body where a fluid flows, thereby sterilizing a fluid by irradiating the flowing fluid with UV light.
Abstract:
A chip substrate includes laminated conductive portions, and laminated insulation portions that electrically isolate the conductive portions, with a cavity in a recessed shape in a region including the insulation portions on an upper surface of the chip substrate. The substrate includes an insulation layer on the upper surface, excluding a region of the cavity, and a continuous plating layer along a periphery of the chip substrate on the insulation layer. A portion of a top surface of each insulation portion is exposed in the cavity, and another portion of the top surface of each insulation portion is coated with the insulation layer. A chip package includes a chip substrate, with an optical element sealed in the cavity by a sealing member or lens.