摘要:
A method of fabricating a gate structure of a field effect transistor comprising processes of forming an &agr;-carbon mask and plasma etching a gate electrode and a gate dielectric using the &agr;-carbon mask. In one embodiment, the gate dielectric comprises hafnium dioxide.
摘要:
A method for preventing electrical short circuits in a multi-layer magnetic film stack comprises providing a film stack that includes a layer of magnetic material having an exposed surface. A protective layer is deposited on the exposed surface of the magnetic layer. The protective layer may comprise, for example, a fluorocarbon or a hydrofluorocarbon. The film stack is etched and the protective layer protects the exposed surface from a conductive residue produced while etching the film stack. The method may be used in film stacks to form a magneto-resistive random access memory (MRAM) device.
摘要:
A method of etching high dielectric constant materials using halogen gas and reducing gas chemistry. An embodiment of the method is accomplished using a 20 to 300 sccm of chlorine and 2 to 200 sccm of carbon monoxide, regulated to a total chamber pressure of 2-100 mTorr to etch a hafnium oxide layer.
摘要:
A method of plasma etching a layer of dielectric material having a dielectric constant that is greater than four (4). The method includes exposing the dielectric material layer to a plasma comprising a hydrocarbon gas and a halogen containing gas.
摘要:
A method of plasma etching a metal layer (e.g., titanium (Ti), tantalum (Ta), tungsten (W), and the like) or a metal-containing layer (e.g., tantalum silicon nitride (TaSiN), titanium nitride (TiN), tungsten nitride (WN), and the like) formed on a hafnium-based dielectric material is disclosed. The metal/metal-containing layer is etched using a gas mixture comprising a halogen-containing gas and a fluorine-containing gas. The fluorine within the gas mixture provides a high etch selectivity for the hafnium-based dielectric material.
摘要:
Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.
摘要:
Methods for forming anisotropic features for high aspect ratio application in etch process are provided in the present invention. The methods described herein advantageously facilitates profile and dimension control of features with high aspect ratios through a sidewall passivation management scheme. In one embodiment, sidewall passivations are managed by selectively forming an oxidation passivation layer on the sidewall and/or bottom of etched layers. In another embodiment, sidewall passivation is managed by periodically clearing the overburden redeposition layer to preserve an even and uniform passivation layer thereon. The even and uniform passivation allows the features with high aspect ratios to be incrementally etched in a manner that pertains a desired depth and vertical profile of critical dimension in both high and low feature density regions on the substrate without generating defects and/or overetching the underneath layers.