Method of etching metals with high selectivity to hafnium-based dielectric materials
    3.
    发明申请
    Method of etching metals with high selectivity to hafnium-based dielectric materials 审中-公开
    以铪基电介质材料高选择性蚀刻金属的方法

    公开(公告)号:US20060060565A9

    公开(公告)日:2006-03-23

    申请号:US10418994

    申请日:2003-04-17

    摘要: A method of plasma etching a metal layer (e.g., titanium (Ti), tantalum (Ta), tungsten (W), and the like) or a metal-containing layer (e.g., tantalum silicon nitride (TaSiN), titanium nitride (TiN), tungsten nitride (WN), and the like) formed on a hafnium-based dielectric material is disclosed. The metal/metal-containing layer is etched using a gas mixture comprising a halogen-containing gas and a fluorine-containing gas. The fluorine within the gas mixture provides a high etch selectivity for the hafnium-based dielectric material.

    摘要翻译: 金属层(例如钛(Ti),钽(Ta),钨(W)等)等等离子体蚀刻或金属含有层(例如,钽氮化硅(TaSiN),氮化钛 ),氮化钨(WN)等)形成在铪基电介质材料上。 使用包含含卤素气体和含氟气体的气体混合物来蚀刻含金属/含金属层。 气体混合物中的氟提供了对铪基电介质材料的高蚀刻选择性。

    Hydrogen-free method of plasma etching indium tin oxide
    5.
    发明授权
    Hydrogen-free method of plasma etching indium tin oxide 失效
    无氢等离子体蚀刻氧化铟锡的方法

    公开(公告)号:US06368978B1

    公开(公告)日:2002-04-09

    申请号:US09262785

    申请日:1999-03-04

    IPC分类号: B01J1500

    摘要: The present invention is a method for hydrogen-free plasma etching of indium tin oxide using a plasma generated from an etchant gas containing chlorine as a major constituent (i.e., chlorine comprises at least 20 atomic %, preferably at least 50 atomic %, of the etchant gas). Etching is performed at a substrate temperature of 100° C. or lower. The chlorine-comprising gas is preferably Cl2. The etchant gas may further comprise a non-reactive gas, which is used to provide ion bombardment of the surface being etched, and which is preferably argon. The present invention provides a clean, fast method for plasma etching indium tin oxide. The method of the invention is particularly useful for etching a semiconductor device film stack which includes at least one layer of a material that would be adversely affected by exposure to hydrogen, such as N- or P-doped silicon.

    摘要翻译: 本发明是使用由含有氯作为主要成分的蚀刻剂气体产生的等离子体对氧化铟锡进行无氢等离子体蚀刻的方法(即氯包含至少20原子%,优选至少50原子% 蚀刻剂气体)。 在100℃以下的基板温度下进行蚀刻。 含氯气体优选为Cl 2。 蚀刻剂气体可以进一步包括非反应性气体,其用于提供被蚀刻的表面的离子轰击,并且其优选为氩。 本发明提供了一种清洁,快速的等离子体蚀刻氧化铟锡的方法。 本发明的方法特别适用于蚀刻半导体器件膜堆叠,其包括至少一层将受到暴露于氢的不利影响的材料,例如N或P掺杂的硅。

    Techniques for plasma etching silicon-germanium
    7.
    发明授权
    Techniques for plasma etching silicon-germanium 失效
    等离子体蚀刻硅锗的技术

    公开(公告)号:US06642151B2

    公开(公告)日:2003-11-04

    申请号:US10093050

    申请日:2002-03-06

    IPC分类号: H01L21302

    CPC分类号: H01L21/3065 G02B6/136

    摘要: The present invention provides novel etching techniques for etching Si—Ge, employing SF6/fluorocarbon etch chemistries at a low bias power. These plasma conditions are highly selective to organic photoresist. The techniques of the present invention are suitable for fabricating optically smooth Si—Ge surfaces. A cavity was etched in a layer of a first Si—Ge composition using SF6/C4F8 etch chemistry at low bias power. The cavity was then filled with a second Si—Ge composition having a higher refractive index than the first Si—Ge composition. A waveguide was subsequently fabricated by depositing a cladding layer on the second Si—Ge composition that was formed in the cavity. In a further embodiment a cluster tool is employed for executing processing steps of the present invention inside the vacuum environment of the cluster tool. In an additional embodiment a manufacturing system is provided for fabricating waveguides of the present invention. The manufacturing system includes a controller that is adapted for interacting with a plurality of fabricating stations.

    摘要翻译: 本发明提供了用于蚀刻Si-Ge的新颖蚀刻技术,其采用SF6 /氟碳蚀刻化学品,以低偏压功率。 这些等离子体条件对有机光致抗蚀剂具有高选择性。 本发明的技术适用于制造光学平滑的Si-Ge表面。 在低偏压功率下,使用SF6 / C4F8蚀刻化学法在第一Si-Ge组合物的层中蚀刻空腔。 然后用具有比第一Si-Ge组合物更高的折射率的第二Si-Ge组合物填充空腔。 随后通过在形成在空腔中的第二Si-Ge组合物上沉积包覆层来制造波导。 在另一个实施例中,采用集群工具来在集群工具的真空环境内执行本发明的处理步骤。 在另外的实施例中,提供制造系统用于制造本发明的波导。 该制造系统包括适于与多个制造站相互作用的控制器。

    Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures
    9.
    发明授权
    Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures 失效
    在半导体结构中蚀刻钨或氮化钨电极栅的方法

    公开(公告)号:US06440870B1

    公开(公告)日:2002-08-27

    申请号:US09755522

    申请日:2001-01-05

    IPC分类号: H01L2100

    摘要: The present invention relates to a method of etching tungsten or tungsten nitride in semiconductor structures, and particularly to the etching of gate electrodes which require precise control over the etching process. We have discovered a method of etching tungsten or tungsten nitride which permits precise etch profile control while providing excellent selectivity, of at least 175:1, for example, in favor of etching tungsten or tungsten nitride rather than an adjacent oxide layer. Typically, the oxide is selected from silicon oxide, silicon oxynitride, tantalum pentoxide, zirconium oxide, and combinations thereof. The method appears to be applicable to tungsten or tungsten nitride, whether deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD). In particular, an initial etch chemistry, used during the majority of the tungsten or tungsten nitride etching process (the main etch), employs the use of a plasma source gas where the chemically functional etchant species are generated from a combination of sulfur hexafluoride (SF6) and nitrogen (N2), or in the alternative, from a combination of nitrogen trifluoride (NF3), chlorine (Cl2), and carbon tetrafluoride (CF4). Toward the end of the main etching process, a second chemistry is used in which the chemically functional etchant species are generated from Cl2 and O2. This final portion of the etch process may be referred to as an “overetch” process, since etching is carried out to at least the surface underlying the tungsten or tungsten nitride. However, this second etch chemistry may optionally be divided into two steps, where the plasma source gas oxygen content and plasma source power are increased in the second step.

    摘要翻译: 本发明涉及一种在半导体结构中蚀刻钨或氮化钨的方法,特别涉及要蚀刻工艺精确控制的栅电极的蚀刻。 我们已经发现了蚀刻钨或氮化钨的方法,其允许精确的蚀刻轮廓控制,同时提供至少175:1的优异选择性,例如有利于蚀刻钨或氮化钨而不是相邻的氧化物层。 通常,氧化物选自氧化硅,氮氧化硅,五氧化二钽,氧化锆及其组合。 该方法似乎适用于通过物理气相沉积(PVD)或化学气相沉积(CVD)沉积的钨或氮化钨。 特别地,在大多数钨或氮化钨蚀刻工艺(主蚀刻)期间使用的初始蚀刻化学使用等离子体源气体,其中化学功能蚀刻剂物质是由六氟化硫(SF 6 )和氮(N 2),或者替代地,来自三氟化氮(NF 3),氯(Cl 2)和四氟化碳(CF 4)的组合。 在主蚀刻过程结束时,使用第二种化学成分,其中化学功能的蚀刻剂物质由Cl2和O2产生。 蚀刻工艺的最后部分可被称为“过蚀刻”工艺,因为至少对钨或氮化钨的表面进行蚀刻。 然而,该第二蚀刻化学可以可选地分为两个步骤,其中在第二步骤中等离子体源气体氧含量和等离子体源功率增加。

    Stable plasma process for etching of films
    10.
    发明授权
    Stable plasma process for etching of films 失效
    用于蚀刻膜的稳定等离子体工艺

    公开(公告)号:US06399507B1

    公开(公告)日:2002-06-04

    申请号:US09401603

    申请日:1999-09-22

    IPC分类号: H01L21302

    CPC分类号: H01J37/321

    摘要: In accordance with the present invention, process parameters are controlled to provide a stable etch plasma. We have discovered that it is possible to operate a stable plasma with a portion of the power deposited to the plasma being a capacitive contribution and a portion of the power deposited being an inductive contribution. In particular, a stable plasma may be obtained within two process regions. In the first region, the gradient of the capacitive power to the power applied to the inductively coupled source for plasma generation [∂Pcap/∂PRF] is greater than 0. In the second region, plasma stability is controlled so that [∂Pcap/∂PRF] is less than 0 and so that Pcap

    摘要翻译: 根据本发明,控制工艺参数以提供稳定的蚀刻等离子体。 我们已经发现,可以操作稳定的等离子体,其中一部分功率沉积到等离子体是电容性的,并且所沉积的功率的一部分是感应贡献。 特别地,可以在两个工艺区域内获得稳定的等离子体。 在第一区域中,电容性功率对施加到用于等离子体产生的电感耦合源的功率的梯度大于0.在第二区域中,等离子体稳定性受到控制,使得[∂Pcap/ ∠PRF]小于0,因此Pcap << PRF。 通常,Pcap的幅度小于PRF大小的10%。 此外,在具有双功率控制的等离子体处理装置中,在给予对等离子体发生源的功率施加时,通过增加蚀刻处理室中的压力来延长等离子体的稳定性。 这使得能够使用较低功率应用进行等离子体生成的蚀刻工艺。 将稳定的等离子体操作状态覆盖在其它工艺参数上以获得所需的蚀刻结果,以提供可靠的制造工艺。 在稳定等离子体区域中的蚀刻工艺的操作使得能够使用定时蚀刻终点。 例如,在蚀刻含硅层期间,可以使用蚀刻剂等离子体,其在蚀刻工艺的第一定时蚀刻部分期间相对于相邻层提供快速蚀刻和蚀刻选择性,以及在蚀刻过程中的不同蚀刻剂等离子体 最终排放物监测到底层基板界面的蚀刻。 此外,稳定的等离子体以基本上相同的速率帮助蚀刻掺杂和未掺杂的硅和多晶硅衬底,同时提供干净的蚀刻工艺。