Abstract:
An image display system includes a body, a first correction unit, and a second correction unit. The body houses a display unit to display an image and projects a virtual image, corresponding to the image, onto a target space using outgoing light of the display unit. The first correction unit corrects for distortion of the image. The second correction unit corrects a display location of the image on the display unit in accordance with an orientation signal representing a change in orientation of the body. Each of divisional areas of a display screen of the display unit is assigned with a distortion correction parameter for correcting for the distortion of the virtual image. The first correction unit applies distortion correction to each of the image regions of the image on the display screen based on a distortion correction parameter assigned to a divisional area where the image region is displayed.
Abstract:
A display apparatus of the present disclosure makes association between an image to be displayed in a superimposed manner and an image to be displayed in a non-superimposed manner, when displaying a first image and a second image having the same meaning, while switching between superimposed display and non-superimposed display, thereby, allowing drivers to recognize their association immediately when switching between the superimposed display and the non-superimposed occurs. As a result, AR display that is immediately understandable by drivers while not interrupting driving can be realized.
Abstract:
An image display system includes a body, a first correction unit, and a second correction unit. The body houses a display unit to display an image and projects a virtual image, corresponding to the image, onto a target space using outgoing light of the display unit. The first correction unit corrects for distortion of the image. The second correction unit corrects a display location of the image on the display unit in accordance with an orientation signal representing a change in orientation of the body. Each of divisional areas of a display screen of the display unit is assigned with a distortion correction parameter for correcting for the distortion of the virtual image. The first correction unit applies distortion correction to each of the image regions of the image on the display screen based on a distortion correction parameter assigned to a divisional area where the image region is displayed.
Abstract:
A display correction system includes a first obtainer, a second obtainer, a third obtainer, a predictor, and a corrector. The first obtainer obtains travel route information on a travel route ahead of a moving body. The second obtainer obtains speed information on a speed of the moving body. The third obtainer obtains orientation information on an orientation of the moving body. The predictor predicts, based on the travel route information and the speed information, a time period during which the moving body travels through a specific section in the travel route. The corrector performs correction of a displacement of a display position of a content on a display image based on the orientation information. Based on prediction result of the predictor, the corrector executes first control when the moving body is traveling in a normal section, and executes second control when the moving body is traveling in the specific section.
Abstract:
An information processing system is provided with a modeling unit. The modeling unit models, based on a degree of similarity among individual travel histories of a plurality of drivers, individual travel histories of at least one or more drivers from among the individual travel histories of the plurality of drivers to construct a driver model indicating a relationship between conditions of the at least one or more drivers and travel environments of at least one or more vehicles.
Abstract:
A display device includes a controller that determines the mode of inclination of a display object that is an image shaped to point to one direction, and a drawing unit that projects light representing the display object in the mode of inclination determined by the controller onto a windshield to cause the light to be reflected off the windshield toward a user in the vehicle to enable the user to visually recognize the display object in the mode of inclination as a virtual image through the windshield. The controller determines the mode of inclination of the display object that points to the one direction as a navigation direction, by controlling yaw and roll angles of the display object depending on the attribute of a path point that is set on the path to navigate the vehicle to a destination.
Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.
Abstract:
An image display system includes a display unit displaying an image, a projection unit projecting in a target space a virtual image corresponding to the image with an output light of the display unit, a body unit provided thereto the display unit and the projection unit, and an image producing unit including a first correction unit and a second correction unit. The first correction unit performs a first correction processing of correcting, based on a first orientation signal indicative of a first orientation change of the body unit, a display position of the virtual image in the target space. The second correction unit performs a second correction processing of correcting, based on a second orientation signal indicative of a second orientation change of the body unit which is faster than the first orientation change, the display position of the virtual image in the target space.
Abstract:
A peripheral information obtaining unit, a road information obtaining unit, and a communication unit which are included in a driving environment obtaining unit obtain information indicating a current state of a drive environment. A driver information obtaining unit and a vehicle information obtaining unit which are included in a driving state obtaining unit obtain information indicating a driving state of a current driver. A display controller controls at least one of a display position and a display timing of a guidance sign to be displayed on a display unit, based on at least one of the pieces of information which are output from the driving environment obtaining unit, the driving state obtaining unit, and a route guiding unit.