Abstract:
An illumination apparatus of the disclosure includes a semiconductor light-emitting element and a light conversion element. The semiconductor light-emitting element has a first optical waveguide and a second optical waveguide. The light conversion element has a first light converter and a second light converter. A first emitted light emitted from first optical waveguide enters the first light converter and a second emitted light emitted from the second optical waveguide enters the second light converter. First power applied to the first optical waveguide and second power applied to the second optical waveguide are independent.
Abstract:
The present disclosure aims to enhance controllability of a lighting apparatus and increase durability. A lighting apparatus includes a light source; a condenser that converges first light emitted from the light source onto a predetermined focal position of a wavelength conversion element as converged light; the wavelength conversion element that receives the converged light and emits second light at an emission point; and a projection lens that projects the second light as projection light. The lighting apparatus changes the focal position of the condenser lens to change the emission point of the second light to the projection lens, thereby being capable of projecting the second light in any direction.
Abstract:
A light source includes a semiconductor light emitting device; and a wavelength converter. The wavelength converter includes: a substrate; a phosphor layer disposed on the substrate; and a light reflective layer disposed on the substrate so as to surround the phosphor layer. The phosphor layer includes phosphor particles and a first matrix material in which the phosphor particles are dispersed. The light reflective layer includes inorganic compound particles and a second matrix material in which the inorganic compound particles are dispersed. The inorganic compound particles have a refractive index higher than that of the first matrix material. The first matrix material has a refractive index higher than that of the phosphor particles. The phosphor particles have a refractive index higher than that of the second matrix material.
Abstract:
A wavelength conversion member, comprises: a substrate; a first wavelength conversion layer on the substrate, the first wavelength conversion layer containing a first phosphor and a first matrix; and a second wavelength conversion layer containing a second phosphor, first inorganic particles, and a second matrix. The first phosphor and the second phosphor convert at least part of the excitation light incident on the second main surface into first light having longer wavelengths than the excitation light. The first light is emitted from the second main surface of the second wavelength conversion layer. A volume Vp1 of the first phosphor, a volume Vw1 of the first wavelength conversion layer, a volume Vp2 of the second phosphor, and a volume Vw2 of the second wavelength conversion layer satisfy Vp1/Vw1>Vp2/Vw2.
Abstract:
A wavelength converter comprises: phosphor particles; and a matrix that is located between the phosphor particles and comprises zinc oxide crystallites. Pores are included in at least one of the zinc oxide crystallites.
Abstract:
Provided is a wavelength conversion member capable of improving brightness of a light source device. Wavelength conversion member according to the present disclosure includes: first phosphor layer that is disposed on an incidence side where excitation light enters, and contains a plurality of first phosphor particles; and second phosphor layer that is disposed on a side reverse to the incidence side and contains a plurality of second phosphor particles. First phosphor particles include an activation component, second phosphor particles include an activation component same as or different from the activation component included in first phosphor particles, and a concentration of the activation component in first phosphor layer is lower than a concentration of the activation component in second phosphor layer.
Abstract:
A wavelength conversion device includes a matrix containing inorganic material, a phosphor embedded in the matrix, and filler particles embedded in the matrix and containing resin material. This wavelength conversion device prevents the phosphor from falling.
Abstract:
A wavelength conversion member of the present disclosure includes a first matrix, phosphor particles embedded in the first matrix, and at least one selected from the group consisting of first filler particles embedded in the first matrix and surface coating layers respectively covering surfaces of the phosphor particles. The wavelength conversion member satisfies at least one relationship selected from the group consisting of |n3−n1|>|n1−n2| and |n4−n1|>|n1−n2| wherein n1 is a refractive index of the first matrix, n2 is a refractive index of the phosphor particles, n3 is a refractive index of the first filler particles, and n4 is a refractive index of the surface coating layers.
Abstract:
A wavelength conversion member includes a substrate, a dichroic mirror layer, an SiO2 layer, a ZnO layer, and a phosphor layer, which are sequentially stacked from the substrate. The dichroic mirror layer reflects at least part of light incident from the above. The phosphor layer includes a plurality of phosphors and ZnO between the phosphors.
Abstract:
A wavelength conversion member includes: a heat conducting layer; a sapphire substrate having a third surface directly contact with a second surface of the heat conducting layer and the fourth surface opposite to the third surface; and a phosphor layer having a fifth surface directly contact with the fourth surface and a sixth surface opposite to the fifth surface, the phosphor layer including phosphor. At least one of an area of a first surface and an area of the second surface of the heat conducting layer is at least 2800 times as large as an area of the sixth surface of the phosphor layer. At least one of an area of the third surface and an area of the fourth surface of the sapphire substrate is at least two times as large as the area of the sixth surface of the phosphor layer.