摘要:
In one embodiment, a service enabled network (SEN) controller receives, from a control plane of a network service device, service instructions for corresponding network services. The SEN controller may then distribute the service instructions for the network services to appropriate network access devices within the computer network, such that each of the network access devices may correspondingly implement the network services at their respective data planes, thus providing a distributed implementation of the network service within the computer network.
摘要:
Techniques are provided to facilitate monitoring of utility application traffic streams. At a network device that routes utility application traffic for utility devices, control information is received, where the control information is configured to cause the network device to monitor utility application traffic that passes through the network device. The network device monitors a header inserted into utility application traffic messages based on the control information.
摘要:
Methods and systems consistent with the present invention provide dynamic buffer allocation to a plurality of queues of differing priority levels. Each queue is allocated fixed minimum number of buffers that will not be de-allocated during buffer reassignment. The rest of the buffers are intelligently and dynamically assigned to each queue depending on their current need. The system then monitors and learns the incoming traffic pattern and resulting drops in each queue due to traffic bursts. Based on this information, the system readjusts allocation of buffers to each traffic class. If a higher priority queue does not need the buffers, it gradually relinquishes them. These buffers are then assigned to other queues based on the input traffic pattern and resultant drops. These buffers are aggressively reclaimed and reassigned to higher priority queues when needed. In this way, methods and systems consistent with the present invention dynamically balance requirements of the higher priority queues versus optimal allocation.
摘要:
A method of using Ethernet MAC addresses translation scheme and encoding extra information is described herein. According to one embodiment, a process includes, maintaining a MAC (media access control) translation table (MAT) within a network element, the MAT table mapping a physical MAC address with a virtual MAC address for each of a plurality of clients of a local network, and performing layer-2 routing on network traffic with respect to each of the clients based on information stored within the MAT. Other methods and apparatuses are also described.
摘要:
The present invention relates to a method and system for supporting in a router a plurality of data flows using a ternary content addressable memory (TCAM) in which the number of accesses to write to the TCAM is optimized to improve efficiency of updating and subsequent look up. To accommodate the plurality of data flows, the TCAM is partitioned into at least two partitions in which a first portion includes indices having a higher priority and a second portion includes indices having a lower priority. For example, multiple protocol label switching (MPLS) flows and IP-Virtual Private Network (VPN) can be added to the first partition and policy based routing flows can be added to the second partition. During subsequent TCAM look-up of a prefix of an incoming packet the MPLS or IP-VPN flow will subsume any matching policy based routing flow, such as flows classified by an access control list or traffic manager flows.
摘要:
Techniques are provided for adaptive routing of authentication packets in a network, such as a wireless mesh network. At an authenticated device in the network, an authentication packet is received over the network from a device that is seeking authentication. The authentication packet is encapsulated for transmission in Layer 3 packets over an Internet Protocol (IP) tunnel to an authenticator device associated in the network. Similarly, for an authentication packet encapsulated in Layer 3 packets from the authenticator device over the IP tunnel, the authentication packet is decapsulated from the Layer 3 packets and transmitted over the network to the device seeking authentication.
摘要:
According to one embodiment, techniques are provided to enable secure communication among devices in a mesh network using a group temporal key. An authenticator device associated with a mesh network stores a pairwise master key for each of a plurality of devices in a mesh network upon authentication of the respective devices. Using the pairwise master key, the authenticator device initiates a handshake procedure with a particular device in the mesh network to mutually derive a pairwise temporal key from the pairwise master key. The authenticator device encrypts and signs a group temporal key using the pairwise temporal key for the particular device and sends the group temporal key encrypted and signed with the pairwise temporal key to the particular device.
摘要:
Techniques are provided for the controlled scheduling of the authentication of devices in a lossy network, such as a mesh network. An authenticator device that is configured to authenticate devices in a lossy network receives an authentication start message from a particular device to be authenticated. The authenticator device determines a schedule for engaging in an authentication procedure for the particular device based on an indication of current network utilization.
摘要:
Methods and systems consistent with the present invention provide dynamic buffer allocation to a plurality of queues of differing priority levels. Each queue is allocated fixed minimum number of buffers that will not be de-allocated during buffer reassignment. The rest of the buffers are intelligently and dynamically assigned to each queue depending on their current need. The system then monitors and learns the incoming traffic pattern and resulting drops in each queue due to traffic bursts. Based on this information, the system readjusts allocation of buffers to each traffic class. If a higher priority queue does not need the buffers, it gradually relinquishes them. These buffers are then assigned to other queues based on the input traffic pattern and resultant drops. These buffers are aggressively reclaimed and reassigned to higher priority queues when needed. In this way, methods and systems consistent with the present invention dynamically balance requirements of the higher priority queues versus optimal allocation.
摘要:
A standard socket interface is provided to implement socket redundancy. The interface includes socket options to create redundant sockets, obtain the status of redundant sockets, as well as providing error information relating to redundant sockets. A redundant socket may be created on a standby side that becomes active should the active side fail. The standby socket is associated with the active side socket. When an active side fails that has a redundant socket created, the standby side socket seamlessly takes over the sockets operations.