摘要:
A convection barrier for a freezer is disclosed. The convection barrier may include a foil having at least one opening therein, storage and transport means for storing and moving the foil so as to transport the at least one opening to a desired position allowing access through the at least one opening to the interior of the freezer at the desired position and tensioning means for continuously keeping the foil in a tensioned state.
摘要:
In some embodiments of the present disclosure, a robotic storage system for storing microplates carrying a plurality of sample tubes is provided and may comprise a freezer room having a plurality of freezing units and a first robot being capable of removing a microplate from and moving a microplate into a freezing unit. The first robot may be further capable of transferring the microplate to a processing station, where the microplates are stored in the freezing units such that a plurality of microplates are arranged one above the other in a microplate recipient. The robotic storage system may also include at least one processing room and means for thermally separating the processing room from the freezer room. Each processing room may include a processing station having at least one tube transfer module as well as a second robot for moving the microplates between the microplate recipients and the at least one tube transfer module. The first robot may be designed such that it is only capable of removing a microplate recipient from and moving it into a said freezing unit as well as of transferring it from a freezing unit to a processing station or vice versa.
摘要:
A robotic microplate storage system includes a freezer room having freezing units and a first robot for moving and removing microplates into and out of the freezing unit. The first robot can also transfer microplates to a processing station, where the microplates are stored in a microplate recipient within the freezing unit. The storage system may also include at least one processing room which is thermally separated from the freezer room. Each processing room may include a processing station having a tube transfer module and a second robot for moving the microplates between the microplate recipients and the tube transfer module. The first robot may be designed such that it is only capable of removing a microplate recipient from and moving it into a freezing unit as well as transferring it from a freezing unit to a processing station or vice versa.
摘要:
A separation device and a separation method for biomolecular sample material and in particular protein mixtures. For this purpose a separation element 10 for the two-dimensional and preferable electrophoretic separation of components of the sample material is provided in area 30 of a separation plane. According to the invention it is proposed that the separation element 10 has a channel or transfer structure 14 for the locally resolved discharge of separated sample components in a transport direction that is at right angles to the separation plane onto a support surface 16 that is preferably suitable for mass spectroscopic analyses.
摘要:
A heatable pipette, with a needle has an inner channel defined by an inner wall, arranged to conduct electric current through the inner wall for resistively heating the inner wall. The needle has an outer wall, which is defined between the outer wall and the inner wall and connectable for providing pressure air into the outer channel. By conducting current directly through the inner wall, the inner wall itself operates as resistor. Particularly, if the inner wall is made of an appropriate material, for example of stainless steel, the ohmic resistance of the inner wall is not negligible even if the inner wall is very thin. Therefore, the inner wall can directly be used as resistor for resistance heating of the inner wall even if the needle is manufactured in small dimensions.
摘要:
A stacker (1) for storing a plurality of microplates each having a top surface side and a bottom surface side opposed to the top surface side, comprises a housing and a removal gate (13) for removing a microplate of the plurality of microplates out of the housing. The stacker (1) is arranged to accommodate the plurality of microplates inside the housing such that the top surface side of one microplate of the plurality of microplates abuts on the bottom surface side of an adjacent microplate of the plurality of microplates and such that the housing adjoins to the plurality of microplates. Using such a stacker 1, the plurality of microplates can be arranged and stored in a compact manner wherein the single microplates of the plurality of microplates can still selectively and efficiently be accessed. Further, due to the controlled access to the plurality of microplates being arranged inside the housing of the described stacker 1 via the removal gate 13, icing of the microplates can be minimized when the stacker is cooled for long term storage of samples arranged inside the microplates.
摘要:
A stacker (1) for storing a plurality of microplates each having a top surface side and a bottom surface side opposed to the top surface side, comprises a housing and a removal gate (13) for removing a microplate of the plurality of microplates out of the housing. The stacker (1) is arranged to accommodate the plurality of microplates inside the housing such that the top surface side of one microplate of the plurality of microplates abuts on the bottom surface side of an adjacent microplate of the plurality of microplates and such that the housing adjoins to the plurality of microplates. Using such a stacker 1, the plurality of microplates can be arranged and stored in a compact manner wherein the single microplates of the plurality of microplates can still selectively and efficiently be accessed. Further, due to the controlled access to the plurality of microplates being arranged inside the housing of the described stacker 1 via the removal gate 13, icing of the microplates can be minimized when the stacker is cooled for long term storage of samples arranged inside the microplates.
摘要:
A heatable pipette, with a needle has an inner channel defined by an inner wall, arranged to conduct electric current through the inner wall for resistively heating the inner wall. The needle has an outer wall, which is defined between the outer wall and the inner wall and connectable for providing pressure air into the outer channel. By conducting current directly through the inner wall, the inner wall itself operates as resistor. Particularly, if the inner wall is made of an appropriate material, for example of stainless steel, the ohmic resistance of the inner wall is not negligible even if the inner wall is very thin. Therefore, the inner wall can directly be used as resistor for resistance heating of the inner wall even if the needle is manufactured in small dimensions.
摘要:
Methods for transmission mode X-ray diffraction analysis of a sample by means of apparatuses comprising an X-ray radiation source that provides X-ray radiation for irradiating the sample and a detector for detecting X-ray radiation transmitted through and diffracted by the sample. The methods include: (a) placing a sample to be analyzed on a substrate, (b) generating X-ray radiation by means of an X-ray radiation source, (c) positioning the substrate and the sample in an initial position, (d) rotating the substrate and the sample with respect to the initial position around a rotation axis over a predetermined rotation angle, (e) tilting the substrate and the sample with respect to the initial position around a tilting axis over a tilting angle, (f) detecting with a detector the X-ray radiation transmitted through and diffracted by the sample during a time interval, and (g) analyzing the X-ray radiation that is detected.